Feeding Practice for Improved Productivity and Reduced Environmental Impacts

Dominique P. Bureau

Professor Fish Nutrition Research Laboratory Dept. of Animal Biosciences, University of Guelph Email: <u>dbureau@uoguelph.ca</u> Tel: +15192415533; WeChat : Doremons99 Key Steps to Improving Efficiency and Reducing Environmental Impacts of Aquaculture

- 1) Adequately assessing the productivity, waste outputs and the environmental impacts of aquaculture operations
- 2) Improving feed efficiency and minimizing the release of wastes through improvement in feed quality
- Improving production efficiency and minimizing or managing the release of wastes through improvement of farm production processes (e.g. production and feeding management)

 Adequately characterizing productivity, waste outputs and environmental impacts of aquaculture operations

"You can't manage what you can't measure."

Peter Druker

Towards Effective Performance Benchmarking of Ontario Rainbow Trout Farms

Owen Skipper-Horton, Dominique P. Bureau University of Guelph

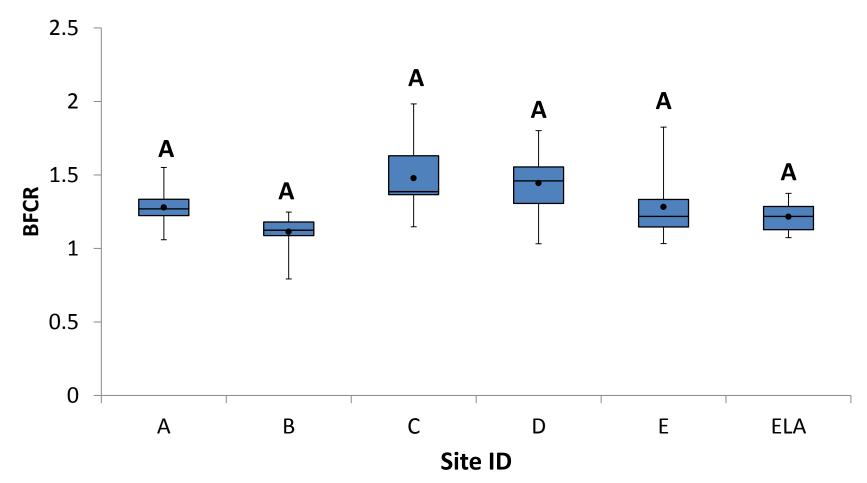
Survey Summary

- 5 commercial sites, 1 experimental (Experimental Lakes Area, ELA)
- Commercial sites: Sep 2008 to Jun 2012
- ELA: 2003-2007
- 128 total commercial production lots (cages)

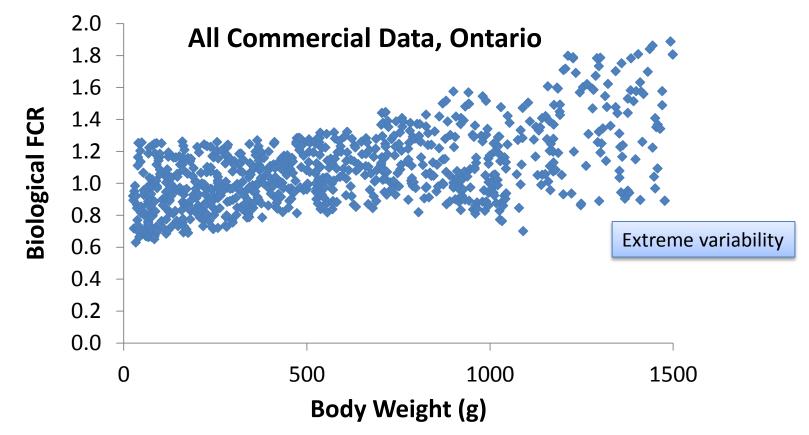
Freshwater Cage RBT Culture in Ontario, Canada

- Open-water cage production of rainbow trout
- Average grow-out period (10 g to 1 kg BW) = 16 months (long and risky!)

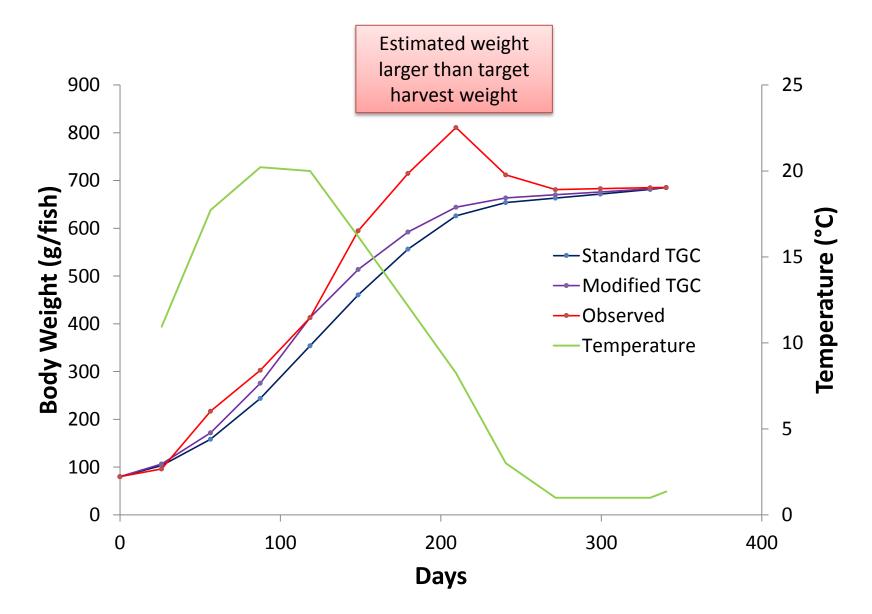
Autumn

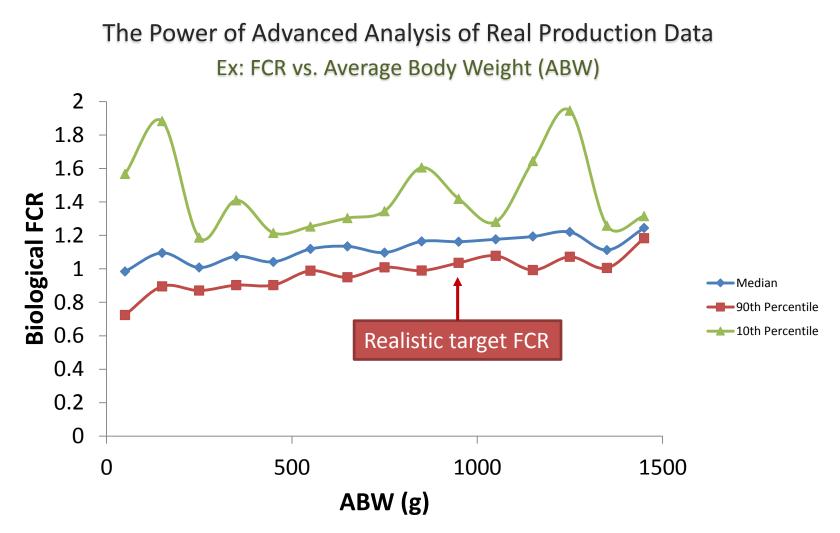


Biological Feed Conversion Ratio (BFCR*)


*BFCR = feed served *per fish* : avg weight gain *per fish*

Different farms / lots use feed resources with different efficiencies and thus produce different of wastes.


– Results –


FCR vs. BW

- Extreme variability of field data.
 - Origin: Biological/environmental variability or sampling errors?
- Data suggests increase in feed conversion ratio as fish weight increases as suggested by models

Growth Trajectory of Rainbow Trout on a Cage Culture Operation

- Advanced statistical analysis of the data provide novel way of looking at highly variable field data and identifying achievable "targets" (as opposed to "ad hoc" ones)
- Auditing/cleaning of field data against model simulation and combining or contrasting theoretical feed requirement model simulation and realistic targets could prove very powerful

Different types of wastes are of concern depending on type of aquaculture operation

- For freshwater fish culture operations:
 - Solid wastes (especially solid organic wastes)
 - Phosphorus wastes (especially dissolved P wastes)
- For marine fish culture operations:
 - Solid wastes (especially organic wastes)
 - Nitrogenous wastes (especially dissolved N wastes)

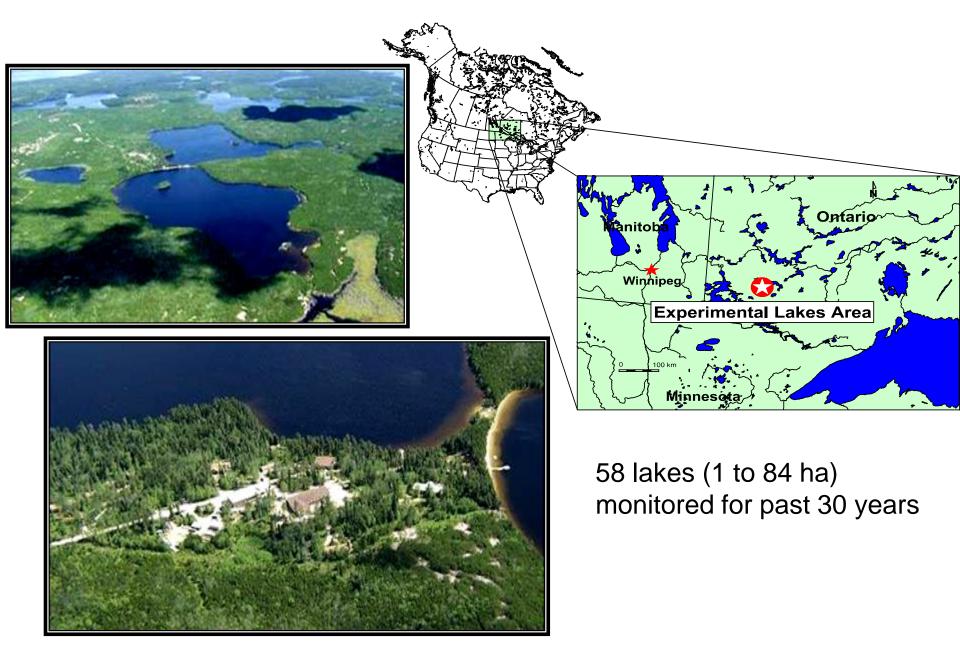
Solid Wastes

Phosphorus Wastes

 Phosphorus (orthophosphate) is of major concern in freshwater because it is the most limiting factor for algal growth and eutrophication

Effect of P was demonstrated in series of studies conducted between 1968-1975 at Experimental Lakes Area (ELA) by Dr. David Schindler & collaborators from Freshwater Institute (Winnipeg, Manitoba)

Estimating Waste Output - Nutritional Approach


N Intake

Feces undigested Solid N wastes

Digested N→Urine and Gills N Dissolved N wastes

Retained N Fish Biomass

The Experimental Lakes Area

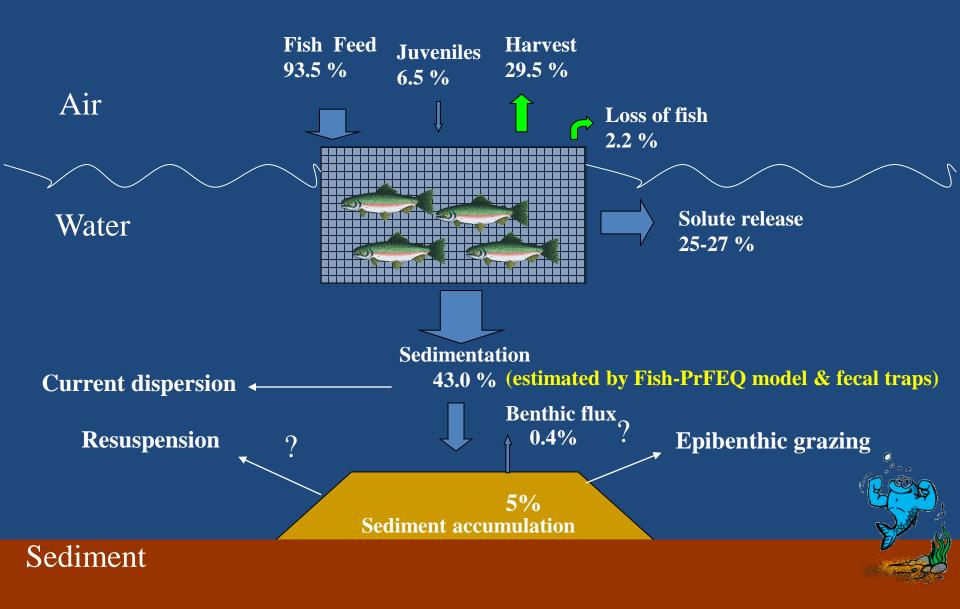
Fisheries & Oceans ACRDP Environmental Impacts of Freshwater Aquaculture

Freshwater Institute Science Laboratory

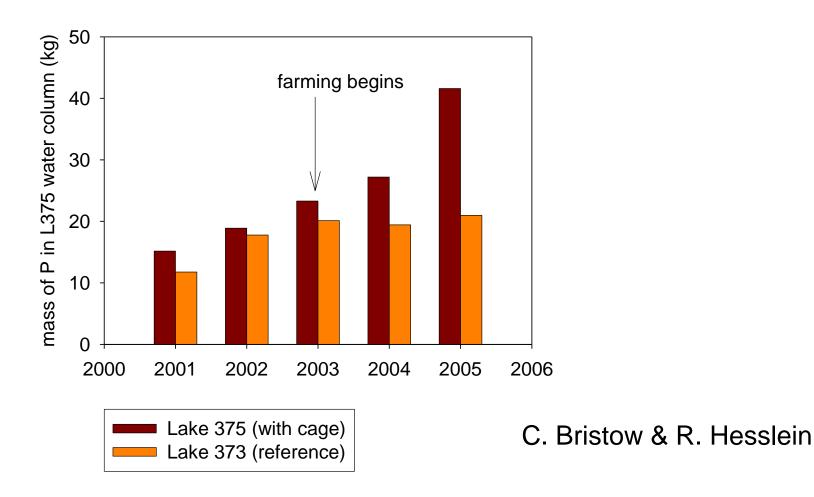
Five production cycles – 2003-2007 Limnological & ecological assessments Whole project: > 30 scientists and students

UG/OMNR Fish Nutrition Research Lab (U of Guelph)

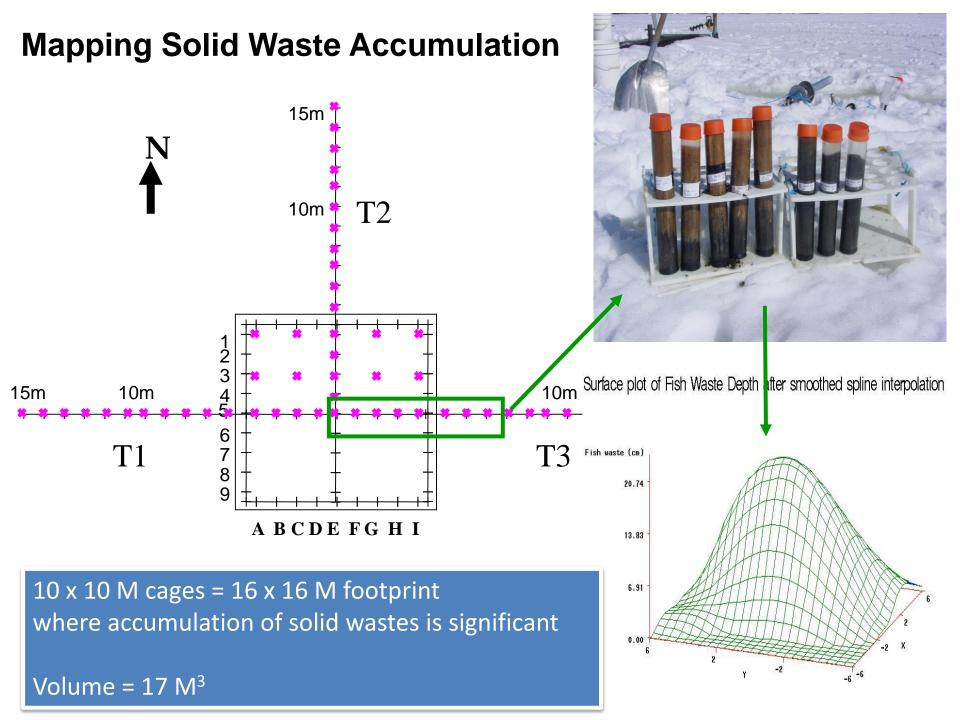
Feed and fish composition analysis > 140 samples Digestibility trials -2004, 2006, 2007 Fish-PrFEQ Model development "Extreme Science" Team of Experimental Lake Area (ELA)

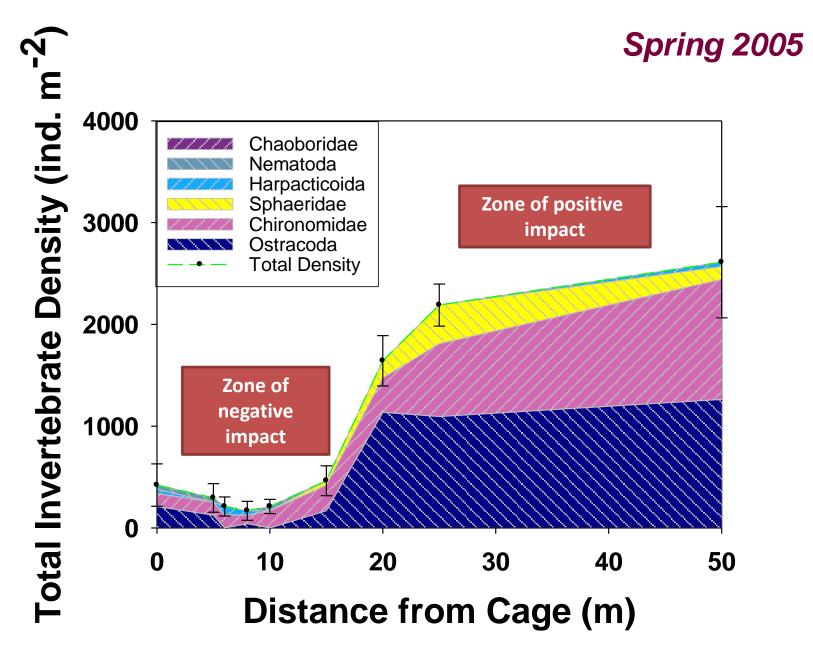


Growth Performance

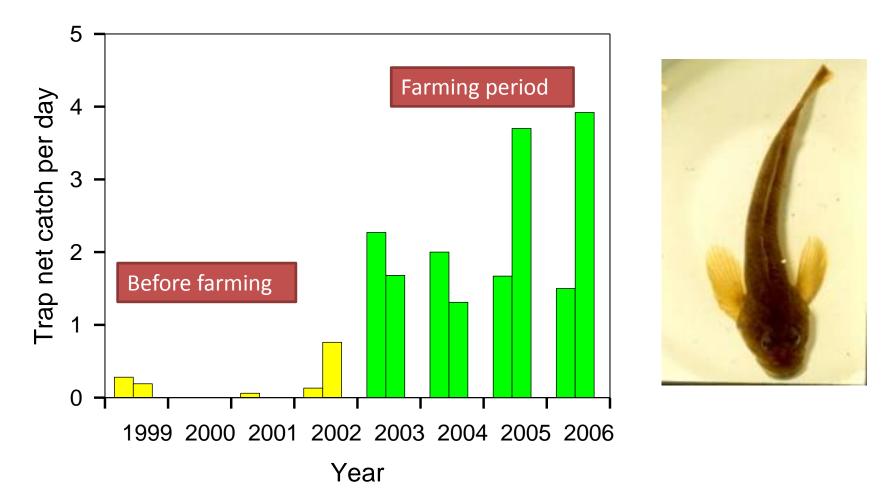

Parameter	2003	2004	2005	2006	2007
Trial duration (d)	167	155	153	162	176
Average temp. (°C)	15.1	14.3	14.6	16.2	15.3
IBW (g/fish)	94.0	101.3	189.9	61.3	69.0
Gain (g/fish)	756.0	894.9	919.8	747.1	871.5
TGC	0.195	0.242	0.204	0.206	0.213
Feed Intake (g/fish)	854.6	972.5	1182.9	997.8	1260
FCR (feed/ gain)	1.13	1.09	1.29	1.34	1.45

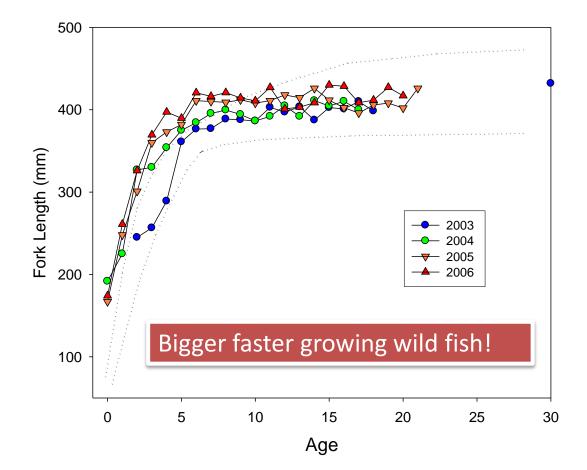
TGC = thermal-unit growth coefficient = $(FBW^{1/3} - IBW^{1/3})/\Sigma$ (T * days), (Iwama and Tautz, 1981)


Phosphorus mass balance for 2005

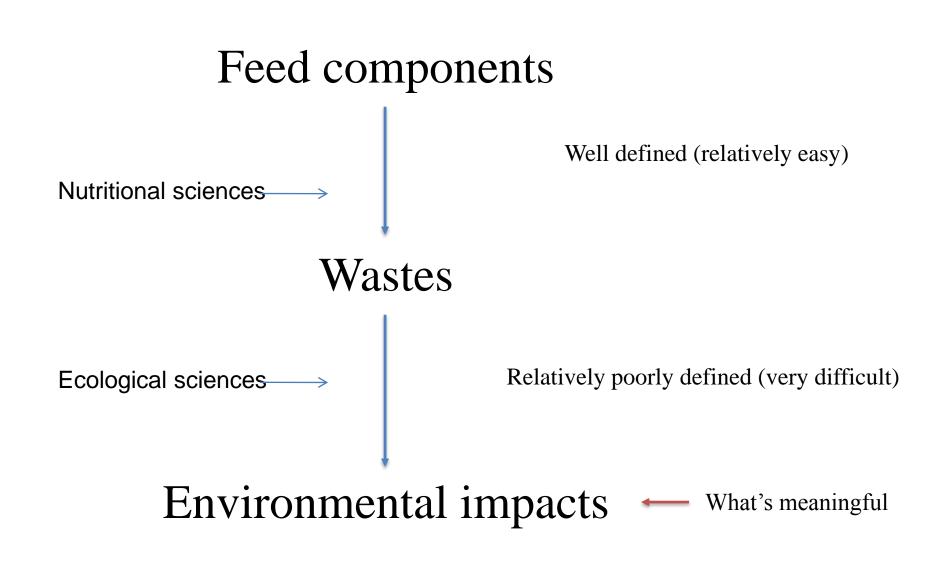


Azevedo and Podemski (2007)


The mass of P in water column increased an average of 8.6 kg/year An average of 64.5 kg P/year was added by the cage operation Only 15% of the P added to L375 remained in the water column


R. Rooney & C. Podemski

Lake 375 Slimy sculpin (forage fish)


Ken Mills and Sandy Chalanchuk

Growth: Lake 375 lake trout

Ken Mills and Sandy Chalanchuk

Nutritional Management of Environmental Impacts?

2. Improving production efficiency and minimizing the release of wastes through improvement in feed quality

"The proof of the pudding is in the eating"

Old English Proverb

Estimation of Solid Waste Outputs of Rainbow Trout Fed Different Feeds

Parameters	1980's	1990's	s 2000's	
	Feed	Feed	Feed	
Digestible Protein, %	38	41	43	
Digestible Energy, MJ/kg	17	19	20	
Theoretical FCR ¹ , feed:gain	1.27	1.14	1.10	
Total Solid Waste ² , kg per kg feed fed per kg fish produced ¹	0.22 0.28	0.20 0.23	0.15 0.17	

1 Based on estimated energy requirement of 21.5 MJ/kg weight gain for fish growing from 10 to 1,000 g

2 Based on published apparent digestibility coefficient of dry matter for common feed ingredients

Parameters	1980's	2000's	Progress achieved
	Feed	Feed	
Chemical Composition			
Crude Protein, %	36	44	Digestible nutrient
Lipid (Fat), %	10	24	density greatly
Digestible Energy, MJ/kg	14	19	
Phosphorus (P), %	2.5	1.1	increased
Apparent Digestibility Co	oefficient (%	⁄6) ¹	
Dry matter (DM)	65	78	
Crude protein (CP)	85	88	
Gross energy (GE)	70	80	
Phosphorus (P)	50	60	
Theoretical FCR ² , feed:gain	1.5	1.1	
Total Solid Wastes			
kg / tonne of feed fed	350	220	Reduced to less
kg / tonne of fish produced	540	250	than half
Solid Nitrogen Wastes			
kg / tonne fish produced	13	9	
Solid Phosphorus Wastes			
kg / tonne fish produced	19	5	Reduced to a fourth
Dissolved Nitrogen Wastes			
kg / tonne fish produced	48	43	
Dissolved Phosphorus Wastes			
kg / tonne fish produced	16	4	Reduced to a fourth

FNRL

Marine Fish Cage Farm on Nanao Island, Guangdong, China

Field Experiments (2002-2005?)

Trash fish (what farmers were using)

Total N wastes/t of fish produced

91 kg

Cuneate drum

Lab-made extruded dry feed Formulated to different protein to digestible energy levels

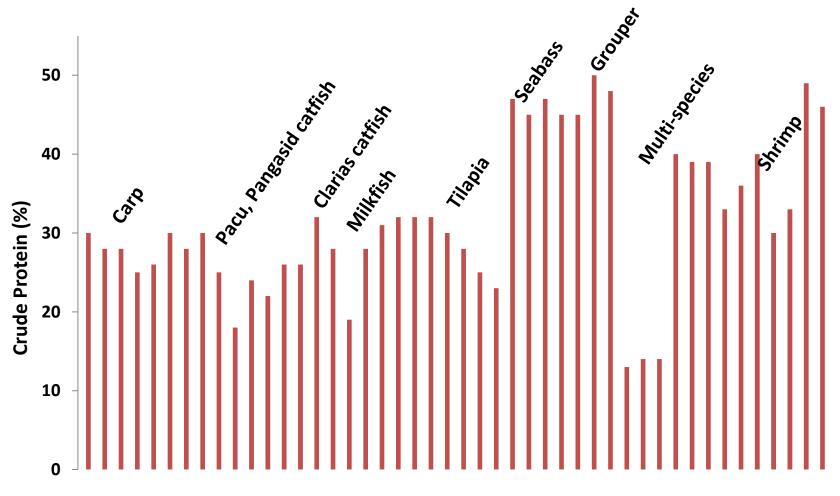
45 kg

1) Feed Formulation Strategies

Key Issues :

Specifications for Multitude of Species and Life Stages

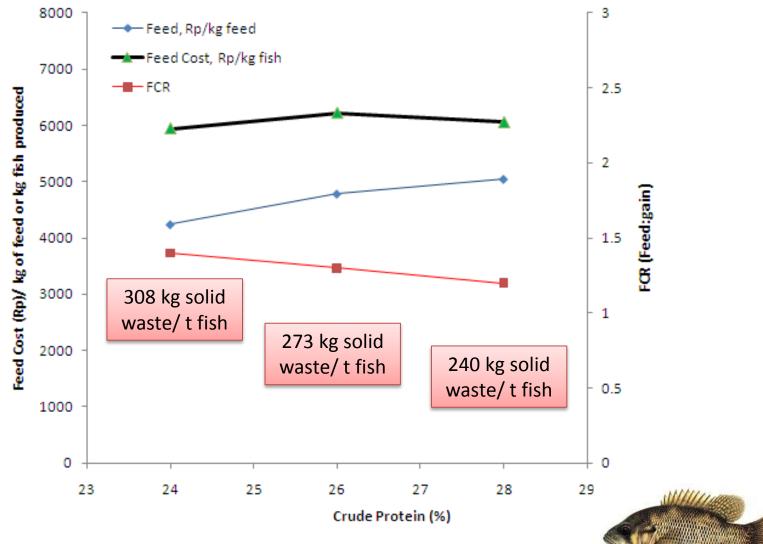
Specification for Different Production Systems / Markets


Waste Outputs and Potential Environmental Impacts

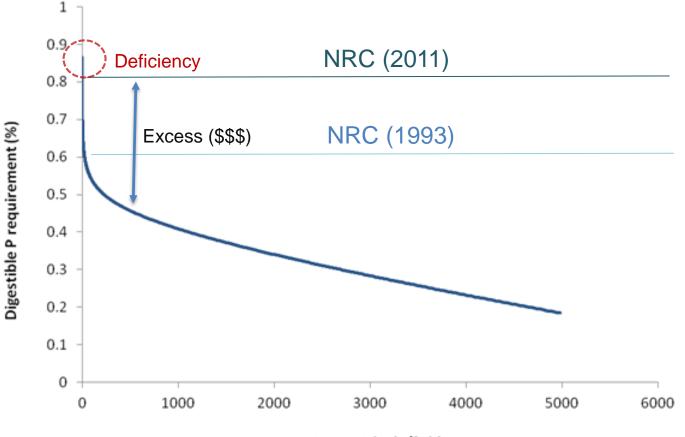
Suggested Strategies:

Optimize digestible nutrient specs for species and life stages

Optimize composition / nutrient density as a function of production and environmental constraints


Protein Levels of Aquaculture Feeds Produced by a "Generalist" Aquaculture Feed Manufacturer

Feeds


How you adapt the nutrient composition of feed of different chemical composition? Multiple contradictory opinions / approaches

Feed Cost (Rp per kg of feed or kg of fish produced) and feed conversion ratio of Nile tilapia fed commercial feeds with different nutrient densities

Parameters		Commercial	Eco
		feed	feed
Chemical composition			
Crude protein	%	33	33
Crude lipid	%	6.0	6.5
Phosphorus (P)	%	1.2	0.9
Digestible protein	%	28	29
Digestible energy	%	11	12
Fish produced and feed	conversion		
Economical FCR	feed:gain	1.7	1.4
Fish production	tonne/year	2400	2400
Feed intake	tonne/year	4080	3360
Waste output			
Solid N waste	tonne/year	33	22
Dissolved N waste	tonne/year	118	91
Total N waste	tonne/year	150	112
Solid P waste	tonne/year	16	10
Dissolved P waste	tonne/year	16	3
Total P waste	tonne/year	32	13

Theoretical Digestible P Requirement of Atlantic salmon of Increasing Weights

Live Weight (g/fish)

Theoretical estimate of digestible P requirement of Atlantic salmon of increasing weights

	Weight Class g/fish				
	0.2 – 20	20 - 500	500 - 1500	1500 - 3000	3000 - 5000
Expected FCR, feed:gain*	0.7	0.8	1.0	1.2	1.6
Dig. P Requirement, Mean, %	0.74	0.55	0.44	0.35	0.25
Dig. P Requirement, Range, % **	0.91-0.64	0.64-0.48	0.48-0.39	0.39-0.30	0.30-0.20

Estimates derived from a factorial modeling exercise (Feed with 20 MJ DE) based on the model described by Hua and Bureau (2012) and used in modeling exercises developed for the NRC (2011).

2) Ingredient-Related Strategies

Key Issues :

Chemical / Nutritional Composition

Digestibility and Bio-Availability of Nutrients

Presence of Anti-Nutritional Factors and Non-Nutrients

Suggested Strategies:

Characterization of Ingredient Quality

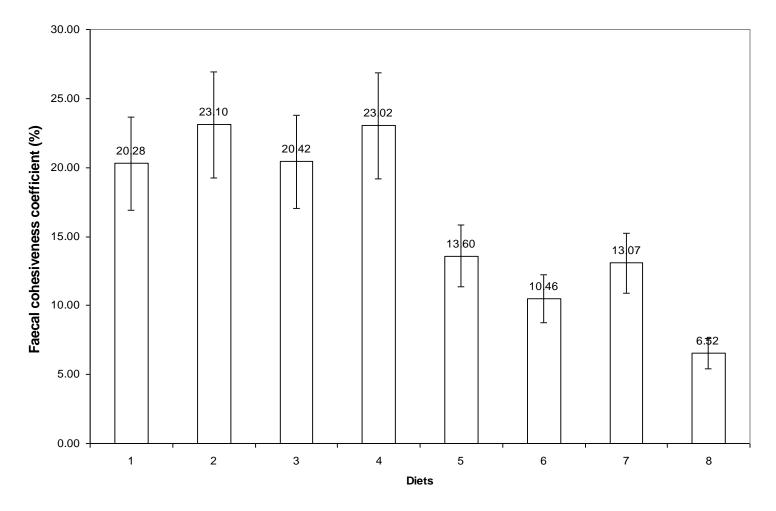
Judicious use of feed additive and processing techniques

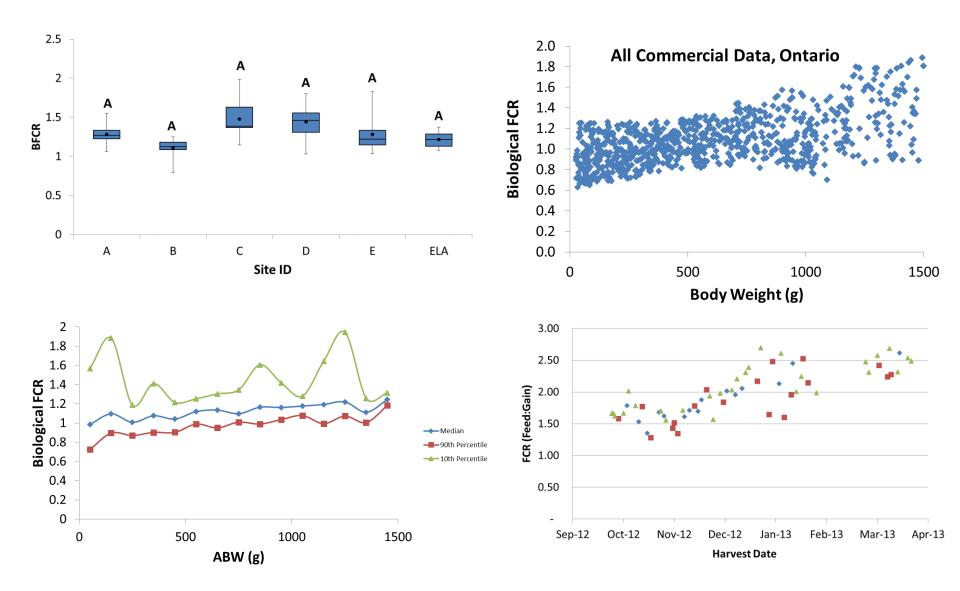
Crude protein (CP), total dietary fiber (TDF) and coefficient of variation (CV) of TDF of various practical feed ingredients

Ingredients	СР	TDF	CV	
	%	%	%	
Soybean hulls	11	78	2	
Cottonseed meal	28	60	6	
Wheat bran	17	42	3	
Corn gluten feed	21	38	50	
Canola meal	35	28	19	
Soybean meal	48	21	26	
Corn	8	10	17	
Corn gluten meal	60	6	8	

Diet	Description
1	Diet with 0% soybean meal
2	Diet with 10% soybean meal
3	Diet with 20% soybean meal
4	Diet 1 supplemented with 1 g Superzyme CS/kg
5	Diet 2 supplemented with 1 g Superzyme CS/kg
6	Diet 3 supplemented with 1 g Superzyme CS/kg
7	Diet 2 supplemented with 2.5 g Superzyme CS/kg
8	Diet 3 supplemented with 2.5 g Superzyme CS/kg

Fecal Cohesiveness/Stability




Figure 1: Faecal cohesiveness coefficient of faecal output from fish fed eight experimental diets over 6 weeks.

Feeds with Soybean Meal + Enzyme Cocktail Produced Less Cohesive, More Easily Breakable Fecal Material 3. Improving production efficiency and minimizing or managing the release of wastes through improvement of feeding practices

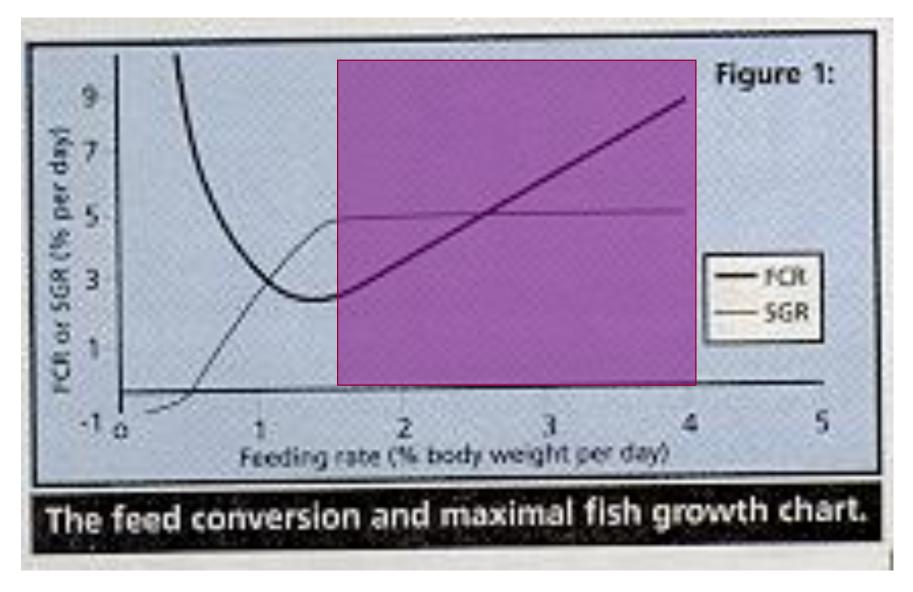
"Knowledge is of no value unless you put it into practice"

Anton Chekhov

Farm to Farm, Lot to Lot, Within Production Cycle Variability

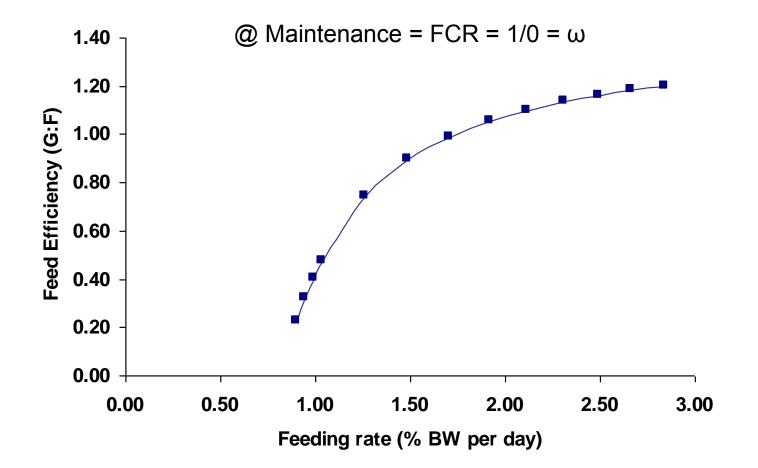
Main Question

How Does "Feeding " and "Environment" Affect Efficiency of Feed and Nutrient Utilization and thus Waste Outputs of Aquaculture Species? The question often explained using an "energy" angle


Bioenergetics is based on hierarchy of energy allocation

"Growth is the surplus of energy after all other components of the energy budget have been covered or satisfied"

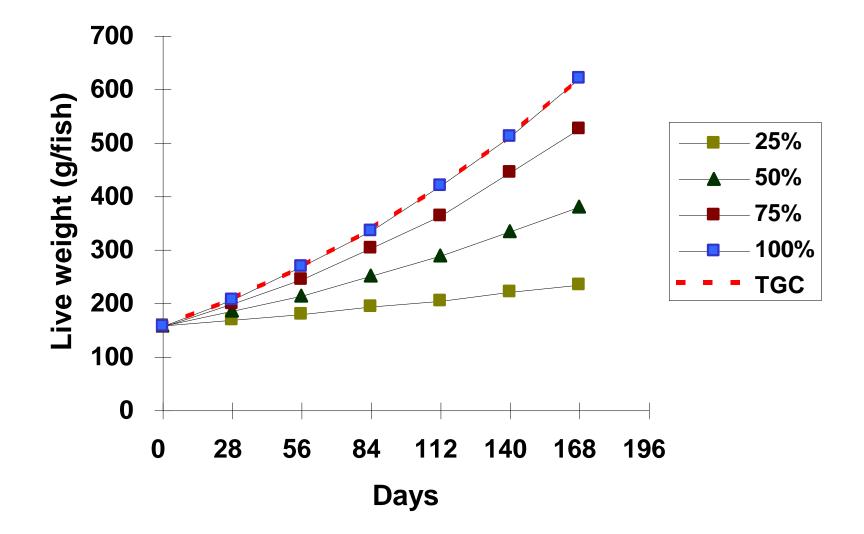
Elliott (1999)


Fish fed **decreasing rations** should have increasingly **less good** feed efficiency.

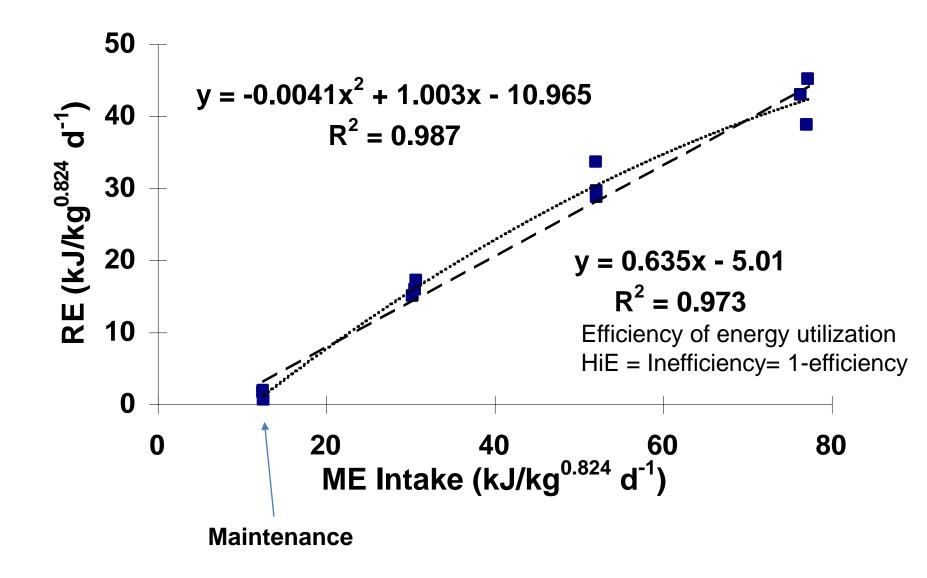
Feeding, Growth and Feed Efficiency / FCR?

Talbot (1993), Einen (1995)

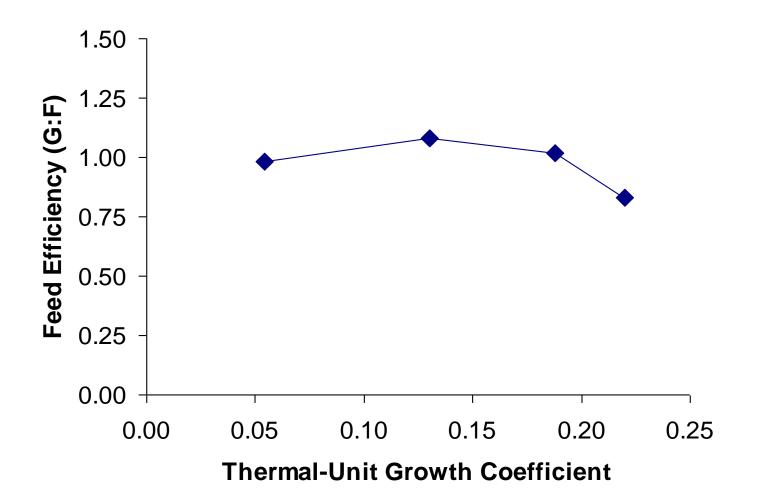
Theoretical Effect of Feeding Level on Feed Efficiency Fish-PrFEQ Model Simulation

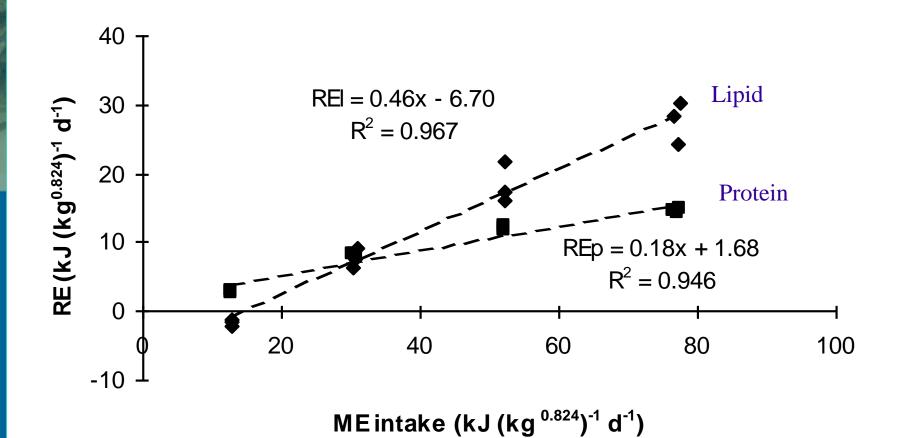

Are these predictions realistic?

	Fe	eding	Contrast			
Parameters	25	50	75	100	Lin	Quad
FBW, g/fish	235	381	526	621	0.001	0.05
Feed, g/fish	78	201	364	554	-	-
FE, gain:feed	0.98	1.08	1.02	0.83	0.001	0.001
TGC	0.054	0.130	0.188	0.220	0.001	0.001

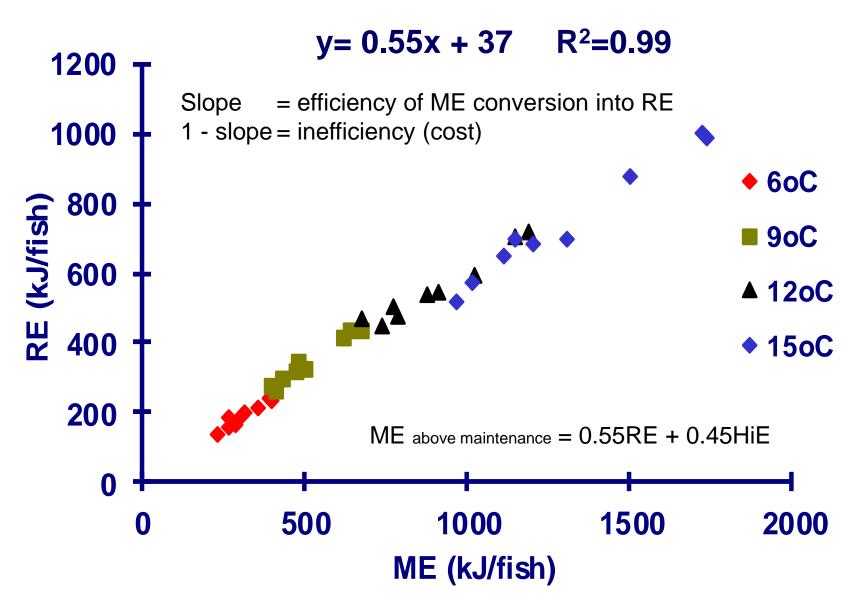

Initial body weight = 157 g/fish, duration = 24 week, water temp. = 8.5°C

Bureau, Hua and Cho (2006)


Growth of Rainbow Trout as a Function of Feed Ration Level


Comparative Carcass Analysis Approach (12 tanks, 4 feed

Effect of Feeding Level on Feed Efficiency



Decreasing feeding level did not have a major effect on feed efficiency! FCR remained around 1!!!

"Energy Gain" Lumps Two Separate Processes: Protein and Lipid Depositions! Positive protein gain = positive weight gain

Bureau et al. (2006)

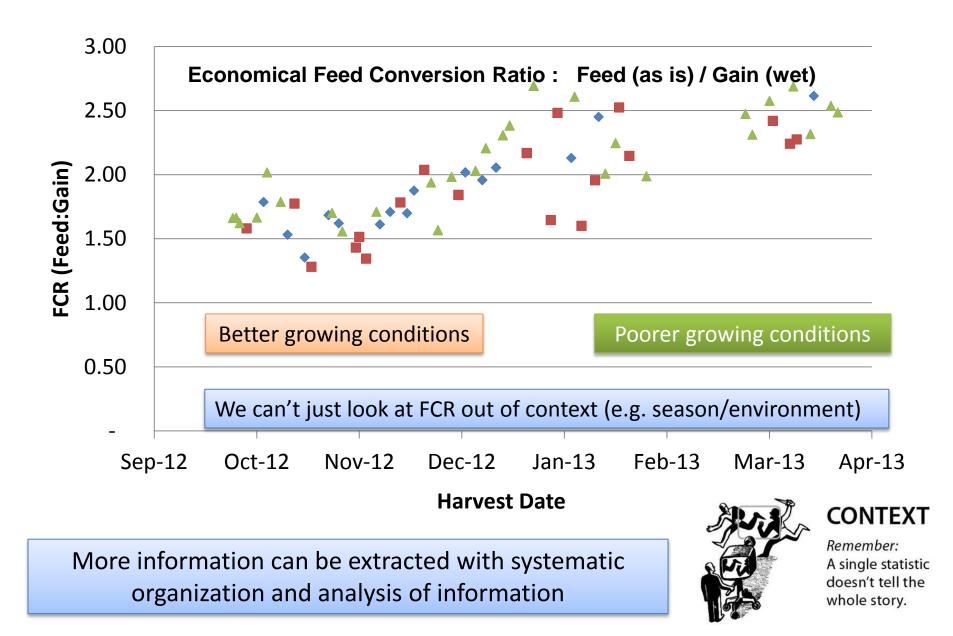
Feeding level and water temperature had no effect on efficiency of metabolizable energy (ME) utilization

Feeding Management

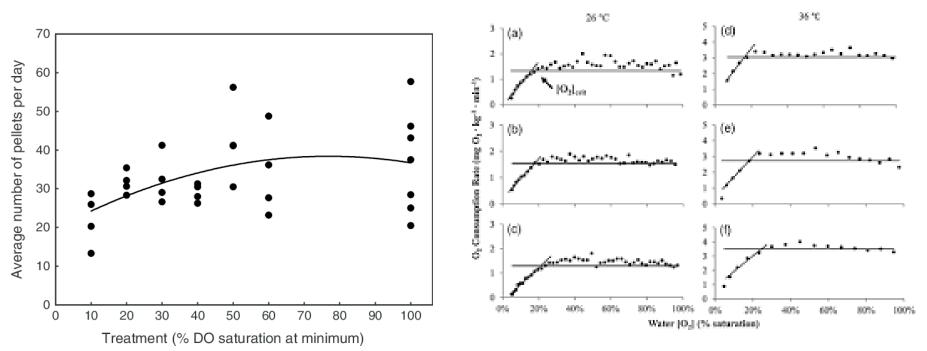
Key Issues :

Feeding management = Often more about people management than animal management!

Significant farm to farm, lot to lot variability


- Differences in production management and feeding practices?
- Different environmental factors limiting efficiency?

Strategies:


Examine management and environment factors influencing efficiency of feed utilization

Improve effectiveness of production and feeding management on farms (supervision, practices, training, tools, etc.)

FCR of Tilapia Produced on Different Aquaculture Operations

Dissolved Oxygen

Take home message:

Dissolved oxygen level below a threshold results in significant decrease in performance. Oxygen is an essential "nutrient" to metabolism.

Too little DO, even occasionally, will hinder performance and may have dire consequence on efficiency

Mass fish death in China, cause unknown...

Flonergia

http://www.flonergia.com

Water Inlet
Radial Air Injection for Enhancing Oxygenation
Axial Air Injection for Enhancing Water Lifting
Air & Water Outlet

Models = Potential Management Tools

Models could be very valuable for improving productive efficiency of aquaculture operations

Information from the lab or the field can be used to construct models

Analysis of available information using models can :

- 1) Highlight limitations of models and contribute to improving them
- 2) Held identify areas of improvement for production management practices

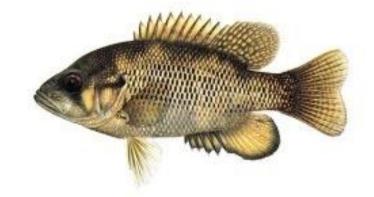
Never blindly believe "model outputs" or "field data" !!!

Aquaculture 410-411 (2013) 138-147

Contents lists available at SciVerse ScienceDirect

Aquaculture

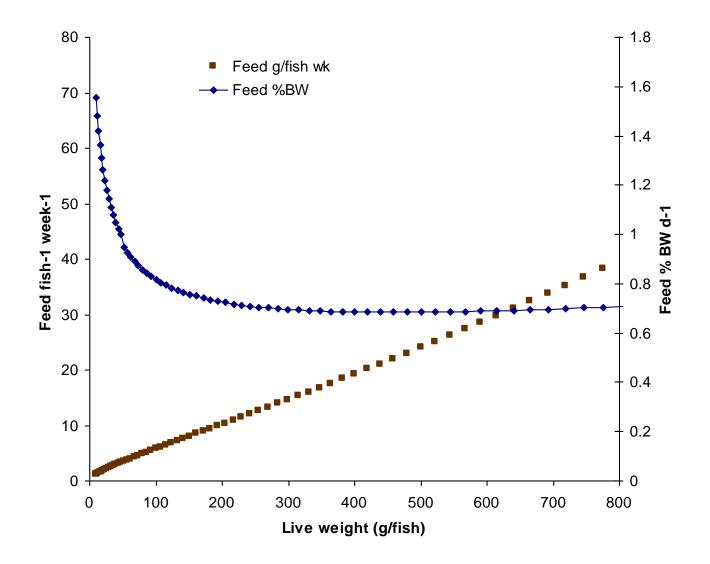
journal homepage: www.elsevier.com/locate/aqua-online

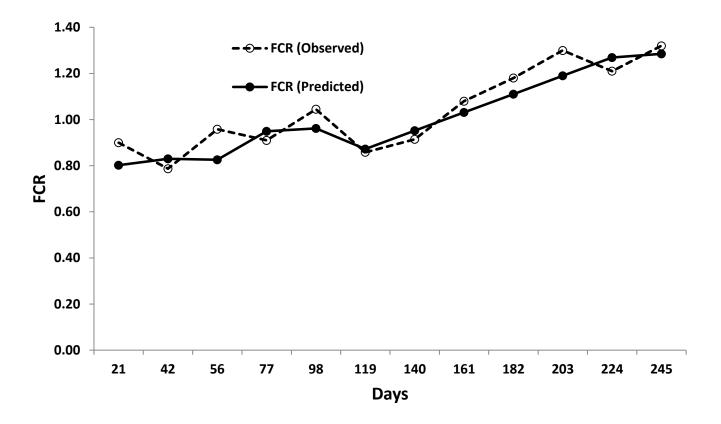

Bioenergetics-Based Factorial Model to Determine Feed Requirement and Waste Output of Tilapia Produced under Commercial Conditions

M.A. Kabir Chowdhury^{a,*}, Sohail Siddiqui^b, Katheline Hua^c, Dominique P. Bureau^a

^a Fish Nutrition Research Laboratory, Dept. of Animal and Poultry Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

^b Dorion Fish Culture Station, Ministry of Natural Resources, Dorion, Ontario, Canada


^c Faculty of Agriculture and Horticulture, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany


Dynamic Estimation of Feed Requirement of Rainbow Trout (Flexible Feeding Chart)

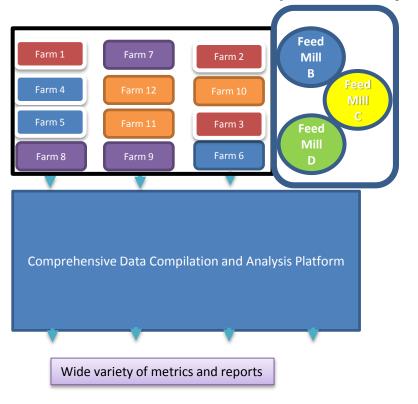
(TGC = 0.180, Temperature = 9°C)

Bureau et al. (2002)

Observed and predicted evolution of feed conversion ratio (feed:gain) of Nile tilapia during a pilot-scale trial


30 Years to Idiosyncratic Modeling and Analysis, Tool Development and Training at the University of Guelph

a 🗄 🕹 .	¢				Model test w	orksheet (24 May 2)	013) detailed sheet f	ound 17 Apr 2017 - Excel			? 🛧 –
TLE HOME	INSERT PAGE LA	AYOUT FORMU	JLAS D	ATA RE\	VIEW VIE	W					
Land Cut Land Copy → Iste I Copy → Format	Calibri Painter B I U -	• 11 • A A			-	Text Ge e & Center - \$	eneral • %	Formatting • Table •	Styles • • •	🗸 🔍 Clear 🔻	Z ¥ ■■ Sort & Find & Filter ▼ Select ▼
Clipboard	Fa Fo	ont	G.	Alig	gnment	E I	Number	r⊒ Styles	Cells	E	Editing
· ·	$\times \checkmark f_x$	G1									
	В	с	D	E	F	G	н	Ι	J	К	L
								Field raw data provide	d and deemed reliable		G1
								Calculated using linear	model		OS1
								Provided, deemed unr	eliable		OG1
								Meaningful reference	value term for modelling		OS2
											OG2
											OS3
)											OG3
Combination	of actual farm data reco	orded and that re	evised								
	Pond #	Date	DOC	Days	Temp	DegreeDays	DegreeDays	Inventory	Est ABW	ABW Model	ABW Model
	15	yyyy-mm-dd	(day)	Period	oC	Period	Sum	estimated revised	(g / pc)	g/pc	Mass gain (g)
i											
Pond area (m		2008-06-06	0		29			264000	0.01	0.01	
Stocking: 264	.000 (± 91 pc/m2)	2008-08-08	63	63	29	1827	1827	225529	8.2	5.3	5.3
	264000	2008-08-16	71	8	29	232	2059	221063	9.5	6.6	1.4
		2008-08-26	81	10	29	290	2349	215605	10.2	8.6	1.9
Mortality rate	e per thousand per day	2008-09-05	91	10	29	290	2639	210282	11.5	10.7	2.2
	2.5	2008-09-24	110	19	29	551	3190	208560	15.5	15.5	4.8
2									Growth Model Estimate	TGC ^2 0.120	
ļ											
Combination	of actual farm data reco	orded and that re			_				1		1
5 	Pond # Farm Data EES Mod	Date lified Gross E	DOC nergy Equ	Davs ation	Temp +	DegreeDavs	DegreeDavs	Inventory	Est ABW	ABW Model	ABW Model
EADY											▣
<u> </u>	Very (usefu	a Ir	nd	va	luab	le bu	t also [,]	very ine	efficio	ent ³⁰⁰


Aquaculture Data Compilation and Analysis Systems

Current state-of-the-art in aquaculture

Idiosyncratic & Segmented Systems

Alternative? A Common, Standardized & Comprehensive Syste

Idiosyncratic and hodgepodge conclusions

Robust analysis and comparisons

My own effort to do something about the situation and opportunity

Mail - dbureau@uoguelp × 💦 (12) Dominique P Bureau × 🗅 wittayaqua.com/i ×	Dominique 🗖 🗙
C O wittayaqua.com/i	☆ 🕐 🗖 💹 🖏 🔍 :
🏢 Apps 🔺 Bookmarks 💽 University of Guelph 🚯 AAFFD 📴 Mail - Dominique Bur 🜞 Research Portal / Port 👾 Welcome to the Cana	Other bookmarks

Goto Modeler 🕞 Log out

7:07 PM

27/09/2017

I failed twice already so this third time is a charm!

P 皆 Bureau DP..

W Bureau DP.

EN

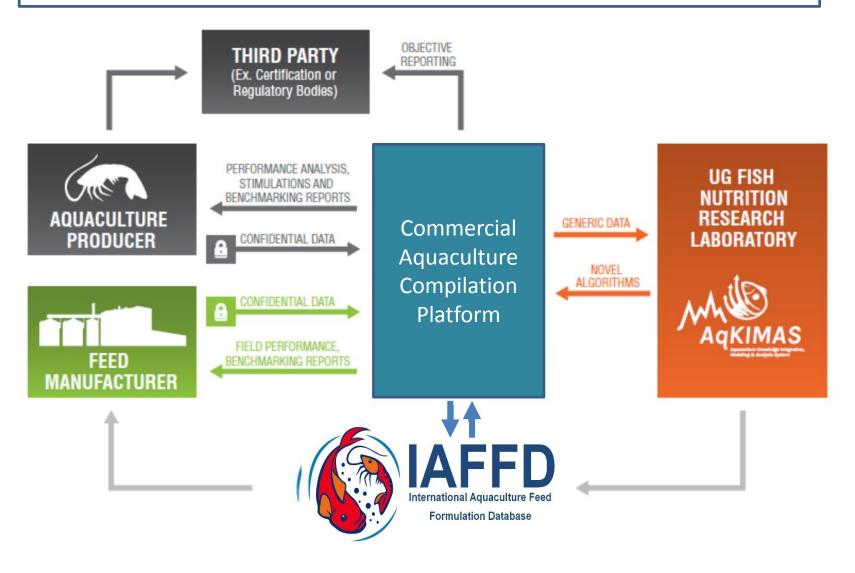
(2:20)

P 皆 Bureau DP...

Camera U..

Pres draft ...

e

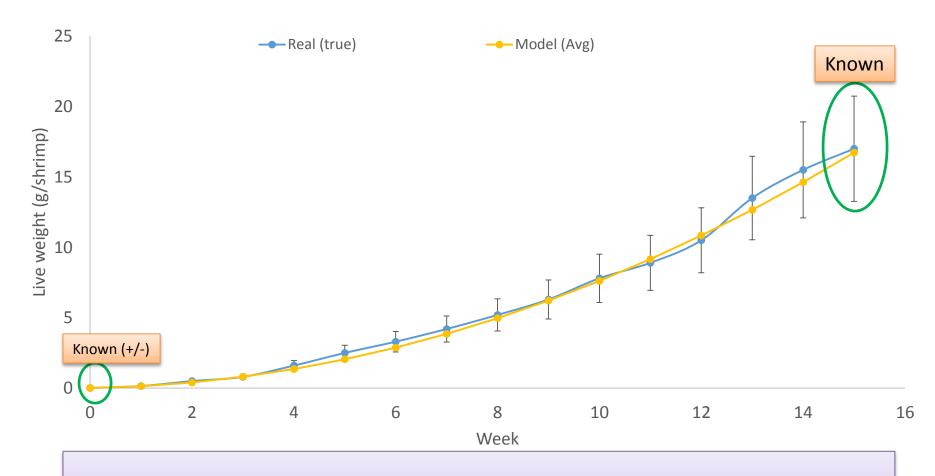

🔵 wittayaqu.

Wittaya Aqua Simply Uses "Typical" Farm Growth + Feed Records Already Collected by Technical Field Staff

	Growth performance a	nd feed conv	version	of white p	acific sh	rimp in E	East Java	& Lamp	oung
No	Pond Area	Stocking	DOC	Est ABW	Est SR	Biomass	Feed	Est	Feed
	(M2)	date	(day)	(g / pc)	(%)	(kg)	consumed	FCR	Туре
1	Pond No:15	6/6/2008	63	8.2	76.0	1645.2	1423.0	0.86	S1
	2900 m2		71	9.5	91.0	2282.3	2134.0	0.94	G1
	Stock : 264,000 (± 91 pc/m2)		81	10.2	97.0	2612.0	2839.0	1.09	G1
	Hatchery: PPM		91	11.5	95.7	2905.5	3628.0	1.25	G1
			110	15.5	79.0	3232.7	4210.0	1.30	G1
2	Pond No:16	6/6/2008	63	7.5	82.0	1494.5	1262.0	0.84	S1
	2500 m2		71	8.6	97.0	2027.1	1913.0	0.94	G1
	Stock : 243,000 (± 97 pc/m2)		81	9.5	100.0	2308.5	2572.0	1.11	G1
			91	10.2	98.5	2441.4	3243.0	1.33	G1
			109	13.5	75.0	2460.4	4140.0	1.68	G1

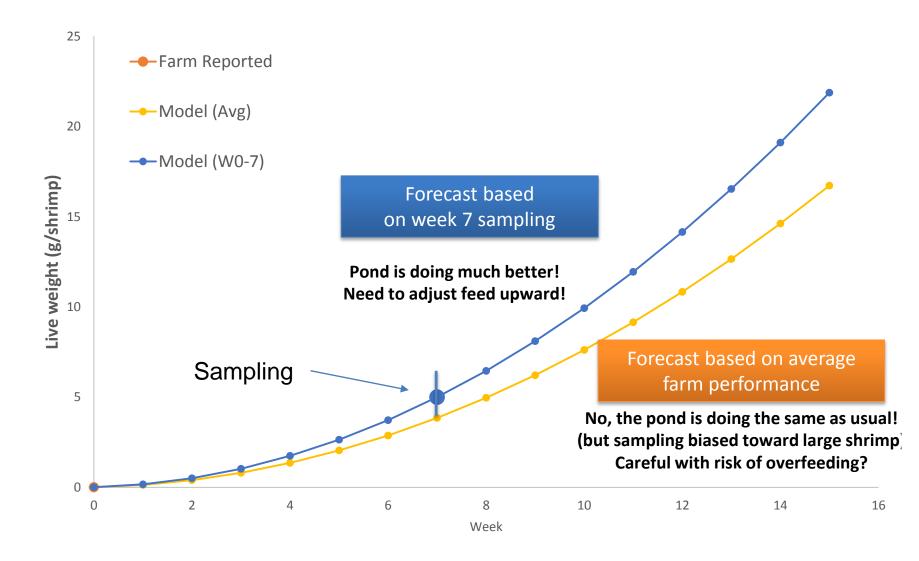

Conceptual Architecture of Wittaya Aqua

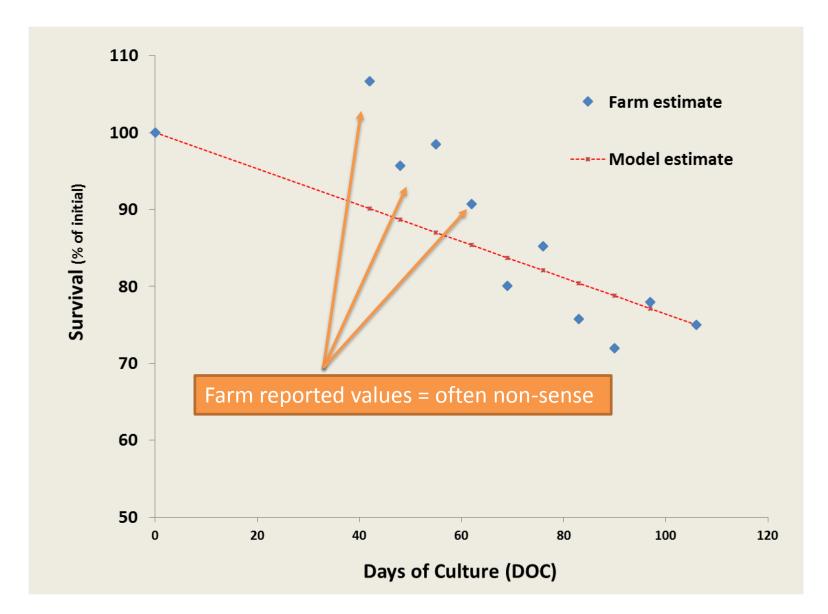
Wit in Aquaculture production and Feeding Management



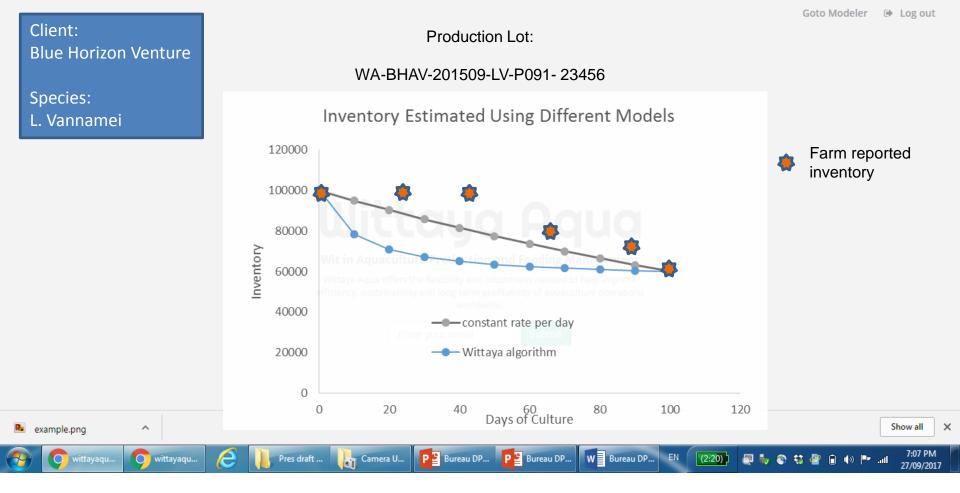
Typical Shrimp Farm Data

Estimates of live weight


The expected growth trajectory of L. vannamei based on farm average and estimated growth trajectory of one production lot


Most these points in between are just rough estimates. Should we care? Any value in having reasonable estimates?

Scenario: Testing a new PL source, a new feed or different production protocol


Forecasting Growth of Shrimp Based on first <u>Sampling Weight</u> vs. <u>Farm</u> <u>Average</u> Performance

The Challenge of Inventory Management

Wittaya Aqua

Wittaya Aqua

The Economic Angle

-Wittaya Aqua		Scenario									
Wittaya Aqua	1	2	3	4	5	6	7				
Parameters		Industry Average	Poorer TGC	Better TGC	Poorer FCR	Best FCR	0	Lower Mortality			
Thermal-Unit Growth Coefficient	TGC	0.185	0.165	0.195	0.185	0.185	0.185	0.185			
FCR, feed:gain	F:G	1.29	1.29	1.29	1.35	1.22	1.29	1.29			
Mortality	%	15	15	15	15	15	20	10			
Days of culture	days	366	410	347	366	366	366	366			
Profitability											
Profits Relative to Industry Average	\$/crop %	235,939 100	59,309 25	310,667 132	141,043 60	346,651 147	231,971 98	239,907 102			
Wastes											
Total Solid Wastes (TSW)	t/crop	303	303	303	317	286	303	303			
Total Nitrogen Wastes (TNW)	t/crop	67	67	67	71	62	66	67			
Total Phosphorus Waste (TPW)	t/crop	10.3	10.3	10.3	11.0	9.6	10.3	10.3			

Assumptions : Water temperature = 11.5° C, feed cost = 1,600/tonne, market weight = 1000 g, Target production = 1,000 t/crop (± 1 year), Price of fish (round) = 3.85/kg, Fixed production costs of 1.33 million on annual (365 d) basis

Take Home Message

- Important to assess how well/poorly farming operations are truly doing. Significant farm to farm variability, most effective step is to determine the cause of this variability
- Waste outputs can be estimated using simple nutritional principles, environmental impacts = a lot more difficult
- Fine-tuning feed composition and judicious selection/use of ingredient and additives can results in significant reductions in FCR and/or waste outputs
- Efficiency of feed & nutrient utilization is generally very stable across feeding levels and environmental conditions
- Limiting environmental conditions (e.g. dissolved oxygen) and feeding practices are most important

Acknowledgments

DSM Nutritional Products and the organizing committee

Funding Partners:

Ontario Ministry of Natural Resources (OMNR) Dept. of Fisheries and Oceans Canada (DFO) Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) AquaNet, Canadian Network of Centres of Excellence National Science and Engineering Research Council (NSERC) Fats and Proteins Research Foundation (FPRF) MITACS Martin Mills Aqua-Cage Fisheries Ltd.