Effectively Supporting of Your Clients and Using of Field Data to Guide Improvement in the Quality of Your Feeds

Dominique P Bureau

Professor

Fish Nutrition Research Laboratory Dept. of Animal Biosciences, OAC University of Guelph, Ontario, Canada Email: dbureau@uoguelph.ca Tel: +1-519-241-5533

Co-Founder and CSO

Wittaya Aqua International Toronto, Ontario, Canada Email: dbureau@wittaya-aqua.ca <u>http://wittaya-aqua.ca</u>

USSEC IAFFD Feed Formulation Workshop Day 1

Research Scale-Up Approach

Design of Experiment and Statistical Power of Pilot-Scale or Field Studies

Design of an Experiment Comparing Two Feeds

FBW = 1029 g

Proper replication = Allows randomization of experimental error

Scenario for FCR

Actual difference	Replicates per group
0.05	64
0.10	17
0.15	9
0.20	6
0.25	4
0.30	4
0.35	3
0.40	3
0.45	3
0.50	3
0.55	3
0.60	2
0.65	2
0.70	2

Two-sample t test for mean difference

Fixed scenario elements Distribution: Normal Method: Exact Standard deviation: 0.1 Nominal power: 0.8 Number of sides: 2 Null difference: 0 Alpha: 0.05 The POWER Procedure (SAS)

Scenario for survival rate

Survival rate difference between two groups (%)

Note: produced by R package CRTSize

Experimental Cages for Shrimp Experimentation

Photo courtesy of M. Castex

Structure and Quality of Independent Variables (Treatments)

Comparison of Eight Feed "Recipes"

Diets 5, 6, 7, 8 are better than Diet 1, 2, 3, 4

The relevant question to ask is: Can we say why?

Why does KFC taste better (or worse) than Mary Brown's, Chester's or Popeye's fried chicken??? Comparison of Eight Feed "Recipes" (Unstructured Treatments)

Response to Treatments with Strong Structure (Structured Treatments)

Nutrient Level (%)

Response to Treatments with Strong Structure

Treatments have good structure (i.e. equally spaced graded levels of nutrients) but the "range" of the treatment appears too narrow or not centered around on the requirement or "commercial relevant" level

Nutrient Level (%)

Response to Treatments with Strong Structure

A strong treatment structure and a broad "range" of the treatments (covering from significantly deficient levels to adequate levels) allows to more clearly understand the nature of the response and analyze this response

Aquaculture Operations Love Collecting Data!

A <u>lot</u> of information is collected every day/week/month by aquaculture operations and feed manufacturers.

Much of the information is collected and analyzed in a "piece-meal" fashion (i.e. not very systematically or meaningfully)

Many factors are varying or different across operations and over time (Ex: feed composition, genetic, environment, stocking density, etc.)

Information collected is often unreliable

How can we make best use of this information?

"Old-New" Perspective on Farm R&D

- Aquaculture feed manufacturers each serve 100s of clients
- Each farm is producing several "production lots" per year
- Different feed lots (batches) are used for different production lots
- Farmers and technical field personnel are monitoring production/performance and collecting a LOT of data
- Can't we take advantage of this situation and make use of collected information more effectively???

Freshwater Cage RBT Culture in Ontario, Canada

- Open-water cage production of rainbow trout
- Average grow-out period (10 g to 1 kg BW) = 12 to 16 months (long and risky!)

Wanted: Effective Production Management Tools

Aquaculture producers require tools to:

Forecast and manage growth and production

Estimate feed requirements and manage feeding (both fish and staff!)

Compare performance (growth, survival, FCR) achieved

Objectively compute "sustainability" parameters / metrics

Ex: Waste outputs (solid, N, P wastes) Fish in: Fish out (FIFO) ratio

<u>Systematic collection</u>, <u>compilation</u>, <u>analysis</u> and <u>sharing</u> of production information (production records, pedigree information, etc.) has been key to improvement of production and efficiency in other animal industries (dairy, swine, beef, sheep, etc.)

<u>Mathematical, statistical, nutritional and genetic models</u> have proven to be very valuable for other animal industries and stand as prominent tools to meet current challenges in aquaculture

Mathematical modeling has been shown to be an effective way of <u>compiling</u>, <u>integrating</u>, and interpreting production information and enabling the development of practical and reliable tools for feed formulation and production, feeding, and waste outputs management.

Dairy producers have been using mathematical models to manage production, breeding and feeding of dairy cows for decades

Descriptive Statistics for Production Parameters

Production Parameter	Count	Average	Weighted Average	Standard Deviation	Min	Max	10 th Percentile	90 th Percentile	ELA Model Farm Average	
Initial Body Weight (g)	101	38.8	35.6	22.8	6.9	110.0	11.1	64.0	103.1	
Final Body Weight (g)	159	1137	1139	295	531	2425	754	1534	955	
Days (#)	159	477	473	117	185	736	302	627	158	
Temperature (°C)	149	9.3	9.4	1.8	6.3	15.4	7.1	11.6	18.0	
Thermal-Unit Growth Coefficient (TGC)	140	0.172	0.175	0.030	0.095	0.232	0.130	0.206	0.185	
Mortality Rate (%)	154	10.6	9.8	10.4	0.3	62.4	25.2	1.0	9.0	
Biological FCR	159	1.32	1.31	0.18	0.79	1.98	1.53	1.13	1.22	
Economic FCR	144	1.42	1.39	0.29	0.90	3.89	1.68	1.20	1.25	

Based on data from 5 aquaculture operations and 140 production lots from 2008-2012

Feed Conversion Ratio (FCR) of Rainbow Trout Reported by Farms

What the source of this variability??? Biological/environmental/dietary variability or sampling errors?

Application to commercial rainbow trout farm data

Farm Estimates Appear to Deviate Towards Size of Largest Individuals Within Cages

Farm-reported estimates of fish weight at different intervals are thus not highly reliable

Reliability of Farm Estimates?

- To estimate body weight of fish, most producers use feed enticement and dip-netting
- Typical body weight estimates involve small numbers of fish (e.g. <1% of population)
- Little to no quantification of within-cage size variability

Dip-netting with seine net

Biological FCR: Farm Estimates vs. Model Estimates (Interval Basis)

- Advanced statistical analysis of the data provide novel way of looking at highly variable field data and identifying achievable "targets" (as opposed to "ad hoc" ones)
- Auditing/cleaning of field data against model simulation and combining or contrasting theoretical feed requirement model simulation and realistic targets could prove very powerful

FCR of Tilapia Produced on Different Aquaculture Operations (using the same commercial feed, SE Asia country)

Uitacue

Making Farm Management Accessible to Aquaculture

Farms are complex, chaotic operations making decisions with imperfect information..

How Many Tilapia Can You Count?

It can be very difficult to accurately assess performance of an aquaculture operation

How Data is Used in Aquaculture

Typical Farm Growth + Feed Records Collected by Technical Field Staff

	Growth performance and feed conversion of white pacific shrimp in East Java & Lampung									
No	Pond Area	Stocking	DOC	Est ABW	Est SR	Biomass	Feed	Est	Feed	
	(M2)	date	(day)	(g / pc)	(%)	(kg)	consumed	FCR	Туре	
1	Pond No:15	6/6/2008	63	8.2	76.0	1645.2	1423.0	0.86	S1	
	2900 m2		71	9.5	91.0	2282.3	2134.0	0.94	G1	
	Stock : 264,000 (± 91 pc/m2)		81	10.2	97.0	2612.0	2839.0	1.09	G1	
	Hatchery : PPM		91	11.5	95.7	2905.5	3628.0	1.25	G1	
			110	15.5	79.0	3232.7	4210.0	1.30	G1	
2	Pond No:16	6/6/2008	63	7.5	82.0	1494.5	1262.0	0.84	S1	
	2500 m2		71	8.6	97.0	2027.1	1913.0	0.94	G1	
	Stock : 243,000 (± 97 pc/m2)		81	9.5	100.0	2308.5	2572.0	1.11	G1	
			91	10.2	98.5	2441.4	3243.0	1.33	G1	
			109	13.5	75.0	2460.4	4140.0	1.68	G1	

A few certainties, a lot of non-sense....

Current situation = Multiple Systems Each Accessible to a Few

Ideal Situation = Robust, Comprehensive but Flexible Systems Accessible to All

Our Solution- Easy Data Input

= W	
Production lo	t xxxx - Production Dal
Date	Ē
DOC	Temperature
Live weight farm	estimate (g/animal)
Farm inventory	
Comments	
	Save
	Save

Our Solution- Easy Data Analysis

Conceptual Architecture of Wittaya Aqua

Wit in Aquaculture Production and Feeding Management

Typical Shrimp Farm Data

Estimates of live weight

The expected growth trajectory of L. vannamei based on farm average and estimated growth trajectory of one production lot

Most these points in between are just rough estimates. Should we care? Any value in having reasonable estimates?

Scenario: Testing a new PL source, a new feed or different production protocol

Forecasting Growth of Shrimp Based on first <u>Sampling Weight</u> or <u>Farm Average</u> Performance

Typical Farm Growth + Feed Records Collected by Technical Field Staff

	Growth performance and feed conversion of white pacific shrimp in East Java & Lampung									
No	Pond Area	Stocking	DOC	Est ABW	Est SR	Biomass	Feed	Est	Feed	
	(M2)	date	(day)	(g / pc)	(%)	(kg)	consumed	FCR	Туре	
1	Pond No:15	6/6/2008	63	8.2	76.0	1645.2	1423.0	0.86	S1	
	2900 m2		71	9.5	91.0	2282.3	2134.0	0.94	G1	
	Stock : 264,000 (± 91 pc/m2)		81	10.2	97.0	2612.0	2839.0	1.09	G1	
	Hatchery : PPM		91	11.5	95.7	2905.5	3628.0	1.25	G1	
			110	15.5	79.0	3232.7	4210.0	1.30	G1	
2	Pond No:16	6/6/2008	63	7.5	82.0	1494.5	1262.0	0.84	S1	
	2500 m2		71	8.6	97.0	2027.1	1913.0	0.94	G1	
	Stock : 243,000 (± 97 pc/m2)		81	9.5	100.0	2308.5	2572.0	1.11	G1	
			91	10.2	98.5	2441.4	3243.0	1.33	G1	
			109	13.5	75.0	2460.4	4140.0	1.68	G1	

A few certainties, a lot of non-sense....

Wittaya Feed - Features

Nutritional Features

Tools enabling the prediction of optimal nutritional specifications of feeds Models of estimation of the digestible nutrients and energy of feeds Feed ingredient economical valuation (aka. price shadowing)

Client Support Tools

Feeds and farm-specific feeding charts Feed inventory and ordering management system

Monitoring and Reporting Features

Systematic monitoring of commercial field performance and nutritional characteristics of feeds Objective computation of complex metrics / indicators (FIFO, waste outputs, etc.) Confidential and non-interfering benchmarking and collaboration amongst stakeholders Ex: aquaculture producers, feed manufacturers, breeders etc.