Defining Nutritional Specifications for Aquaculture Species

a. State-of the-art: What is required, how much and how do we know?

b. Empirical approaches and their limitations

c. Factorial nutrient requirement models and their limitations

D.P. Bureau Email: dbureau@uoguelph.ca

Fish Nutrition Research Lab

Dept. Animal and Poultry Science Ontario Ministry of University of Guelph Natural Resources

What Do Fish and Shrimp Require?

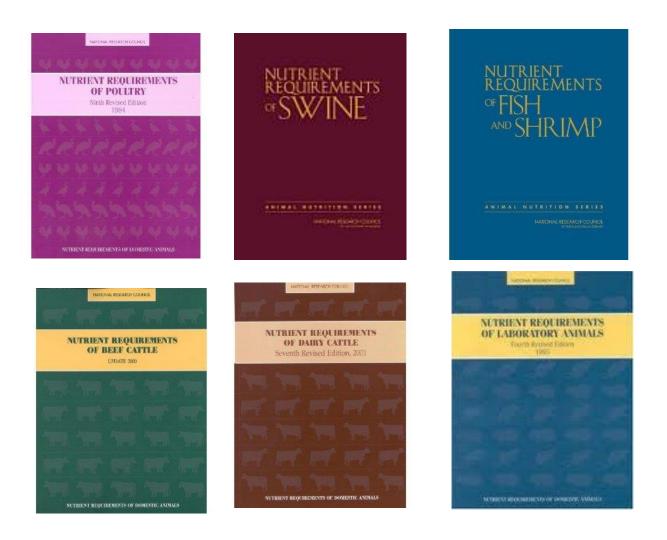
Traditional Essential Nutrients:

- Same for all species:
 - 10 Essential amino acids Fat and water soluble vitamins Vitamin-like compounds (choline, *myo*-inositol) Minerals

ENTRAL HUTSITION SERIES

CEDERA REPROJECTIVE

Nutrients with some aspects of essentiality that are species and life stage-specific: Essential fatty acids ω-3, ω-6


Nutrients for which essentiality is species and stage-

specific:

Taurine Phospholipids (a very wide class of chemicals) Cholesterol ? Nucleotides ? Other compounds?

Novel

National Research Council (NRC) Nutrient Requirements of Animals Documents

NRC Committee of Nutrient Requirements of Fish and Shrimp (2009-2011)

NRC 2011

Review of state-of-the-art

Committee reviewed 1000s of papers

Imperfect document and recommendations represent best effort

NUMBER MATERITISM SERIES

новани мариотосли а

NRC (2011) Essential Amino Acid Requirements of Different Fish Species ("Juvenile" Stage)

AND SHRIMP

Amino Acids	Atlantic	Common	Nile	Channel	Rainbow	Asian	European	Japanese	Red	
	Salmon	Carp	Tilapia	catfish	Trout	Seabass	-	Flounder	Drum	Yellowtail
Arginine	1.8	1.7	1.2	1.2	1.5	1.8	1.8	2.0	1.8	1.6
Histidine	0.8	0.5	1.0	0.6	0.8	NT	NT	NT	NT	NT
Isoleucine	1.1	1.0	1.0	0.8	1.1	NT	NT	NT	NT	NT
Leucine	1.5	1.4	1.9	1.3	1.5	NT	NT	NT	NT	NT
Lysine	2.4	2.2	1.6	1.6	2.4	2.1	2.2	2.6	1.7	1.9
Methionine	0.7	0.7	0.7	0.6	0.7	0.8	NT	0.9	0.8	0.8
Met+Cys	1.1	1.0	1.0	1.0	1.1	1.2	1.1	NT	1.2	1.2
Phenylalanine	0.9	1.3	1.1	0.7	0.9	NT	NT	NT	NT	NT
Phe+Tyr	1.8	2.0	1.6	1.6	1.8	NT	NT	NT	NT	NT
Threonine	1.1	1.5	1.1	0.7	1.1	NT	1.2	NT	0.8	NT
Tryptophan	0.3	0.3	0.3	0.2	0.3	NT	0.3	NT	NT	NT
Valine	1.2	1.4	1.5	0.8	1.2	NT	NT	NT	NT	NT
Taurine	NR	NR	NT	NR	NR	R	0.2	R	R	R

Take home: We have reasonably good estimates for many species. Still major gaps.

Black Tiger shrimp (P. monodon)

The Black Tiger shrimp has been tested for several critical nutrient requirements over the last 15 years

FNRL

Summary of studies on essential amino acid requirements of Black tiger shrimp (*Penaeus monodon*) (source: NRC, 2011)

	Diet CP	DE	Estimated	Model	Reference
g/shrimp	%	kJ/g	Requirement		
0.02	40	ND	1.9% of diet	Broken line	Millamena et al., 1998
			5.3% of CP		
0.32	45	ND	2.5% of diet	Broken line	Chen et al., 1992
			5.5% of CP		
0.02	35–40	ND	0.8% of diet	Quadratic	Millamena et al., 1999
			2.2% of CP		
0.02	35–40	ND	1.0% of diet	Broken line	Millamena et al., 1999
			2.7% of CP		
0.02	35–40	ND	1.7% of diet	Quadratic	Millamena et al., 1999
			4.3% of CP		
0.02	40	ND	2.1% of diet	Broken line	Millamena et al., 1998
			5.2% of CP		
2.4	34	ND	2.0% of diet	Factorial	Richard et al 2010
			5.8% of CP		
0.02	37	15.1	0.9% of diet	Broken line	Millamena et al., 1996
			(w 0.4% Cys)		
			2.4% of CP		
2.4	34	ND	0.9% of diet	Factorial	Richard et al. 2010
			(w 0.1-0.3% Cys)		
			2.9% of CP		
0.02	35–40	ND	1.4% of diet	Quadratic	Millamena et al., 1999
			3.7% of CP		
0.05	40	ND	1.4% of diet	Quadratic	Millamena et al., 1997
			3.5% of CP		
0.02	35–40	ND	0.2% of diet	Quadratic	Millamena et al., 1999
			0.5% of CP		
	0.02 0.32 0.02 0.02 0.02 0.02 0.02 0.02 2.4 0.02 2.4 0.02 0.02 0.02 0.03 0.04 0.05	$ \begin{array}{c ccccc} 0.02 & 40 \\ \hline 0.32 & 45 \\ \hline 0.02 & 35-40 \\ \hline 0.02 & 35-40 \\ \hline 0.02 & 40 \\ \hline 2.4 & 34 \\ \hline 0.02 & 37 \\ \hline 2.4 & 34 \\ \hline 0.02 & 37 \\ \hline 0.02 & 35-40 \\ \hline 0.05 & 40 \\ \hline \end{array} $	0 0.02 40 ND 0.32 45 ND 0.02 35–40 ND 0.02 37 15.1 2.4 34 ND 0.02 35–40 ND 0.02 37 15.1 0.02 35–40 ND 0.02 35–40 ND 0.05 40 ND	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Factors Potential Affecting "Estimate" of Nutrient Requirement

Experimental conditions / errors ex: Fish performance, variability of measurements

Parameter studied

e.g. growth, feed efficiency, nutrient gain, enzyme activity histological analysis, tissue saturation Lysine requirement to maximize weight gain = 2.2% diet Lysine requirement to maximize protein gain = 2.4 to 2.6% diet

Mathematical/statistical model used and threshold value e.g. broken-line vs. exponential, 95% of max. vs. 100% of max.

Feed composition

e.g. digestible energy content, digestible protein content

Mode of expression of requirement

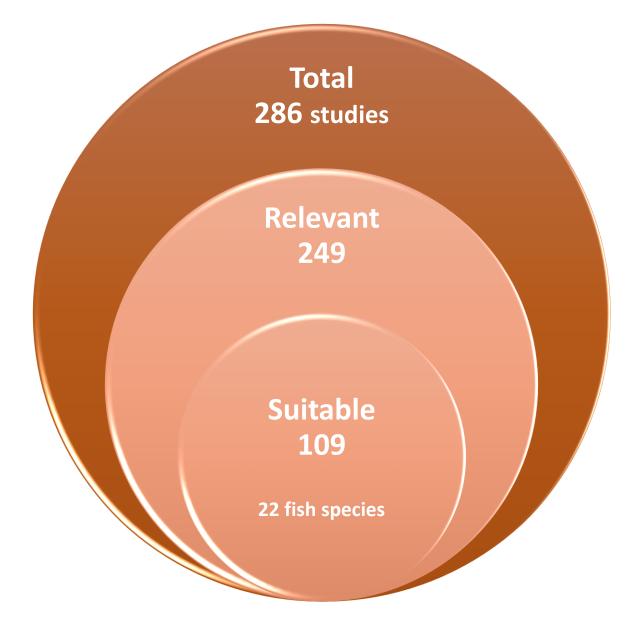
e.g. % of diet, g/MJ DE, g/100 g protein, g kg BW-1 d-1

Developing "Scientifically Sound" Estimates of Essential Amino Acid Requirements of Fish and Shrimp (2009-2010)

Several hundred studies on the essential amino acid requirement of fish have been carried out and published (There seem to be a LOT of data available)

Many factors can potentially affect estimate of requirements

Need to review most of studies for this new NRC (Doing the work already!)

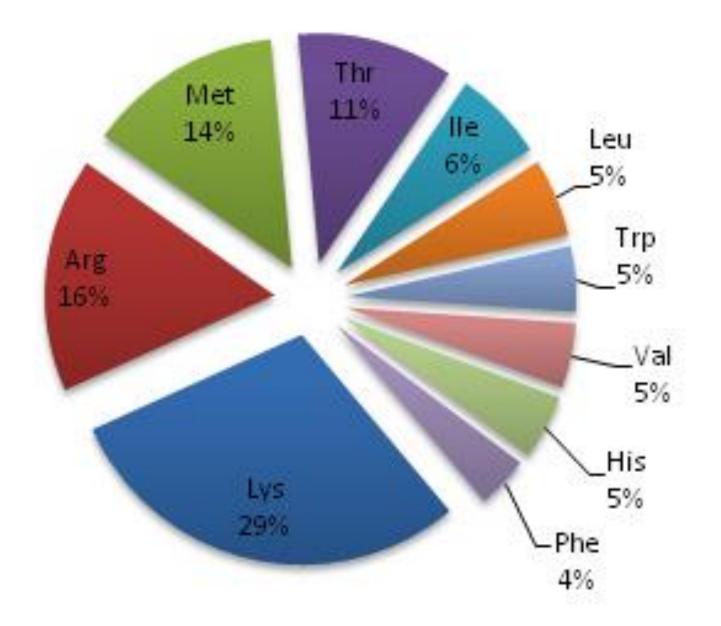

Why not integrate and analyze existing data across studies? Then we could:

1-) Get scientifically valid estimates of requirements for many species

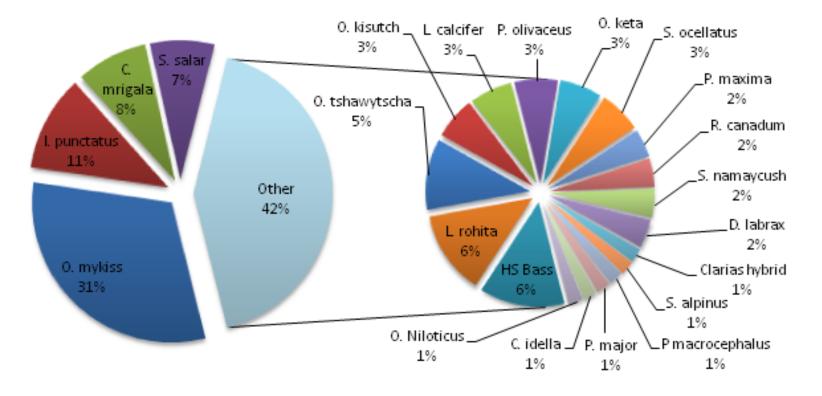
2-) Can get a handle on source of variability in EAA requirements

Project: Meta-Analysis of Essential Amino Acid Requirements Guillaume Salze, post-doctoral fellow

Meta-Analysis of Essential Amino Acid Requirements of Fish

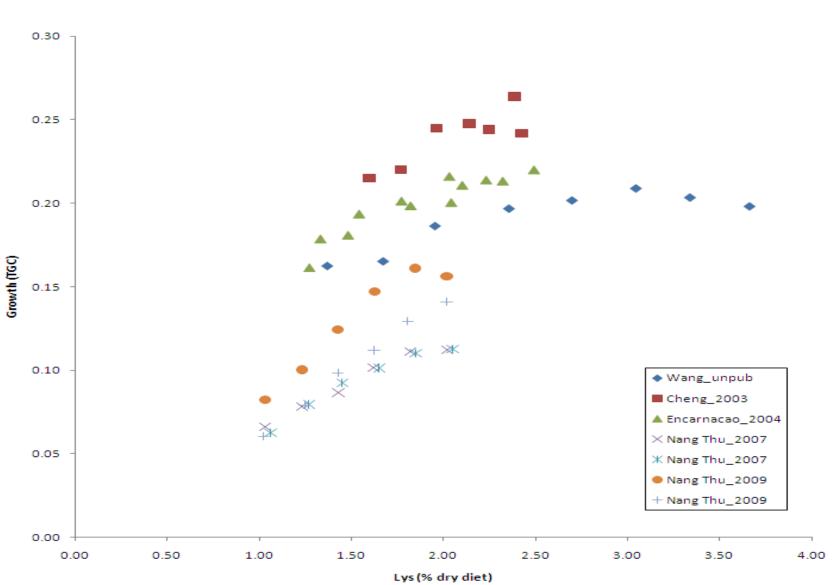

Main causes of rejection:

1) Key piece(s) of information missing in paper and preventing calculation of parameter(s) deemed important


2) Insufficient graded EAA levels (or inappropriate design for goal of metaanalysis)

3) Poor growth or feed efficiency achieved in study

109 Studies on Essential AA Requirements: Breakdown by EAA


109 Studies on 10 Essential Amino Acids: 22 Species Represented!

22 species represented,

Too many species = dilution of research efforts

O. mykiss - Lys vs. growth

Estimating Essential Nutrient Requirements Across Studies is not Simple. Reference values are not always very robust.

FNRL

Essential Amino Acid Requirements of Different Fish Species

Amino Acids	Atlantic Salmon	Common Carp	Nile Tilapia	Channel catfish	Rainbow Trout	Asian Seabass	•	Japanese Flounder	Red Drum	Yellowtail
Arginine	1.8	1.7	1.2	1.2	1.5	1.8	1.8	2.0	1.8	1.6
Histidine	0.8	0.5	1.0	0.6	0.8	NT	NT	NT	NT	NT
Isoleucine	1.1	1.0	1.0	0.8	1.1	NT	NT	NT	NT	NT
Leucine	1.5	1.4	1.9	1.3	1.5	NT	NT	NT	NT	NT
Lysine	2.4	2.2	1.6	1.6	2.4	2.1	2.2	2.6	1.7	1.9
Methionine	0.7	0.7	0.7	0.6	0.7	0.8	NT	0.9	0.8	0.8
Met+Cys	1.1	1.0	1.0	1.0	1.1	1.2	1.1	NT	1.2	1.2
Phenylalanine	0.9	1.3	1.1	0.7	0.9	NT	NT	NT	NT	NT
Phe+Tyr	1.8	2.0	1.6	1.6	1.8	NT	NT	NT	NT	NT
Threonine	1.1	1.5	1.1	0.7	1.1	NT	1.2	NT	0.8	NT
Tryptophan	0.3	0.3	0.3	0.2	0.3	NT	0.3	NT	NT	NT
Valine	1.2	1.4	1.5	0.8	1.2	NT	NT	NT	NT	NT
Taurine	NR	NR	NT	NR	NR	R	0.2	R	R	R

Based on review and "mathematical analysis" (cough! cough!) of hundred of studies!

A lot remained executive decisions by the committee of experts (and me)!

Source: NRC (2011)

Pacific white-legged shrimp (L. vannamei)

FNRL

Essential Amino Acid Requirements

Nutrient	Rainbow Trout	Kuruma prawn	Tiger shrimp	Pacific white legged shrimp
	% diet	Marsupenaeus japonicus	Penaeus monodon	Litopenaeus vannamei
Arginine	1.5	1.6	1.9	
Histidine	0.8	0.6	0.8	
Isoleucine	1.1	1.3	1.0	
Leucine	1.5	1.9	1.7	
Lysine	2.4	1.9	2.1	1.6
Methionine	0.7	0.7	0.7	7
Met+Cys	1.1	1.0	1.0	
Phenylalanine	0.9	1.5	1.4	
Phe+ Tyr	1.8	R	R	
Threonine	1.1	1.3	1.4	
Tryptophan	0.3	0.4	0,2	
Valine	1.2	1.4	R	
	What? Or	nly one value?		NRC (2011)

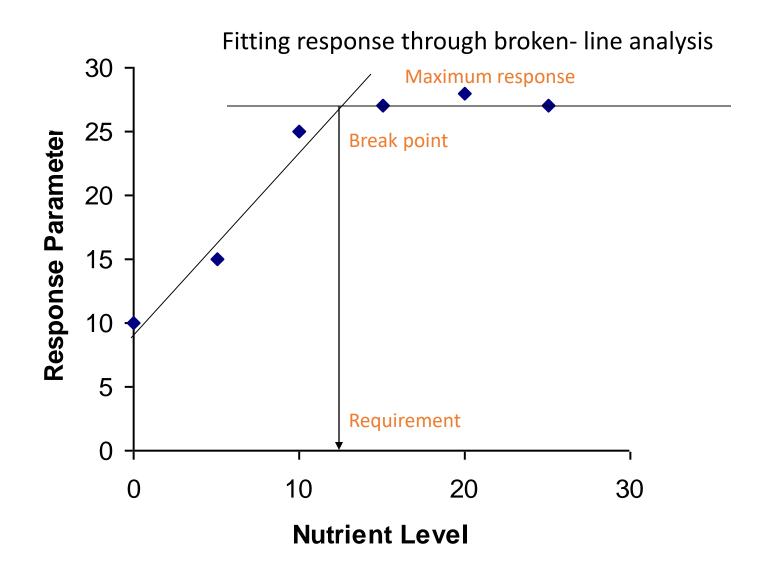
Mineral Requirements

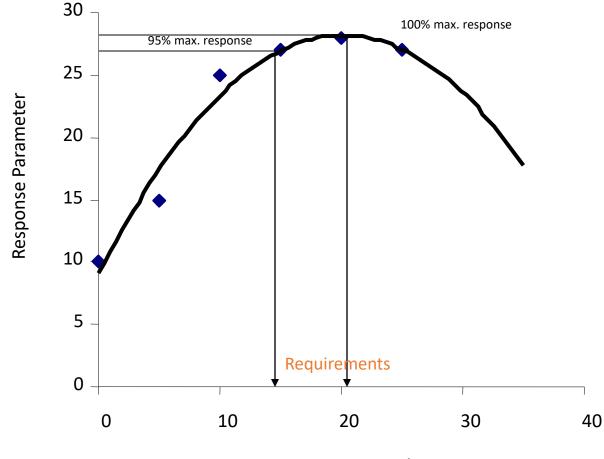
FNRL

Nutrient	Kuruma prawn	Tiger shrimp	Pacific White legged shrimp	Fleshy prawn
	Marsupenaeus japonicus	Penaeus monodon	Litopenaeus vannamei	Fennero-penaeus chinensis
Macro minerals % diet				
Calcium			R	
Chlorine				
Magnesium	0.3		0.26-0.35	
Phosphorus	1.0	0.7	0.3-0.7	
Potassium	1.0	1.2	R	
Sodium				
<i>Micro minerals mg/kg diet</i>				
Copper	R	10-305	16-32	25
Iodine				
Iron	R	R	R	R
Manganese	R		R	
Selenium			0.2-0.4	
Zinc				15

Not very informative!

NRC (2011)


How are we coming up with these numbers?


Analyzing the response

Assuming a constant linear response up to requirement

Polynomial (Quadratic) Function

Response according to the law of diminishing returns

Nutrient Level

The "threshold selected by the investigator can have dramatic impact on the estimate of requirement

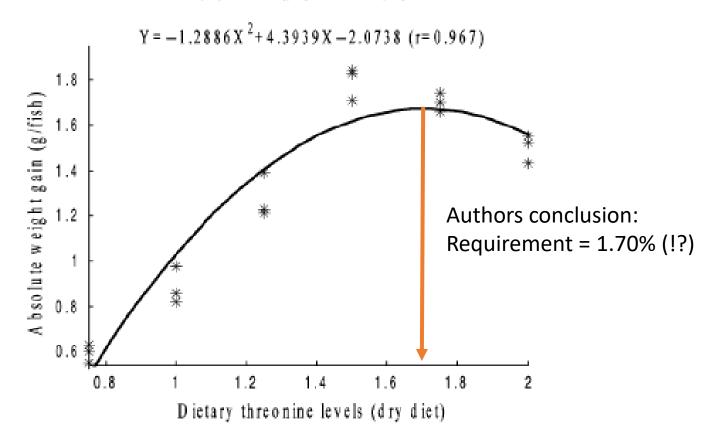
Aquaculture Research

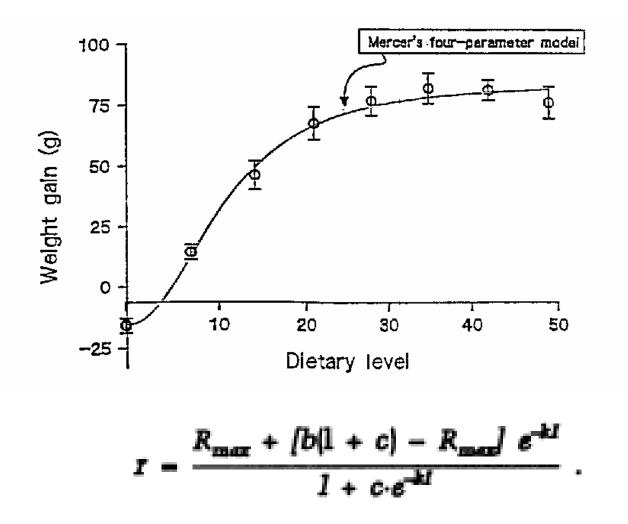
Aquaculture Research, 2008, 39, 1498-1505

Dietary threonine requirement of fingerling Indian major carp, *Labeo rohita* (Hamilton)

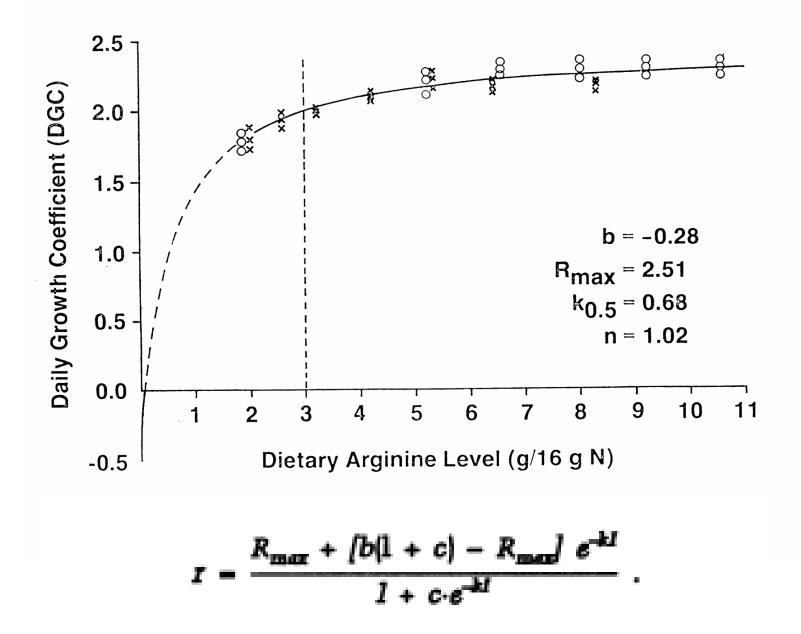
Shabihul Fatma Abidi & Mukhtar A Khan

Fish Nutrition Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh 202 002, India

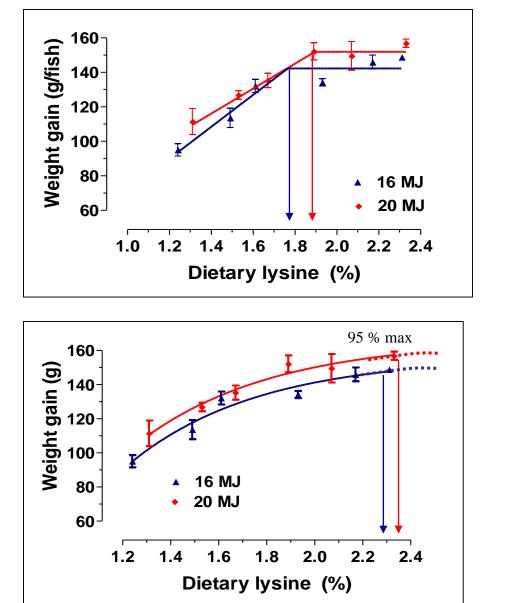



Figure 1 Second-degree polynomial relationship of absolute weight gain to dietary threonine levels.

Polynomial (Quadratic) Function


Response according to the law of diminishing returns

Four (4) Parameter Logistic Equation (Nutritional Kinetic Model)



Response according to the law of diminishing returns

Nutritional Kinetic Model = an asymptotic function

Model Adopted Can Significantly Affect Estimate of Requirement

Broken line model

= 1.8% diet

Nutritional kinetic model

= 2.3% diet

Maintenance and growth requirements for nitrogen, lysine and methionine and their utilisation efficiencies in juvenile black tiger shrimp, *Penaeus monodon*, using a factorial approach

Lenaïg Richard^{1,2}, Pierre-Philippe Blanc², Vincent Rigolet², Sadasivam J. Kaushik¹ and Inge Geurden^{1*} ¹INRA, UMR 1067 Nutrition, Aquaculture and Genomics, F-64310 St-Pée-sur-Nivelle, France ²AQUALMA, BP 93 Immeuble SCIM, 4 rue Galliéni, Mahajanga 401, Madagascar

(Received 18 June 2009 - Revised 28 September 2009 - Accepted 12 October 2009 - First published online 30 November 2009)

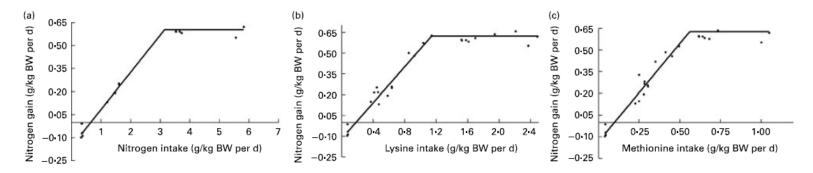
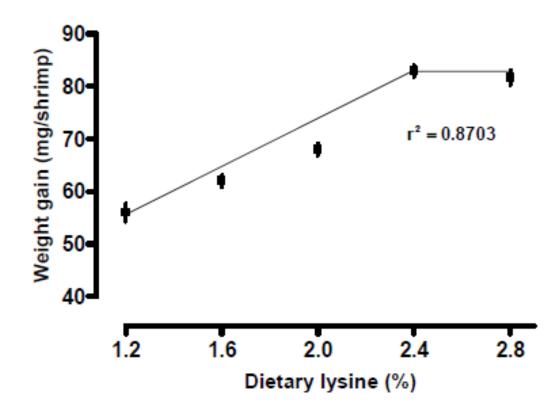



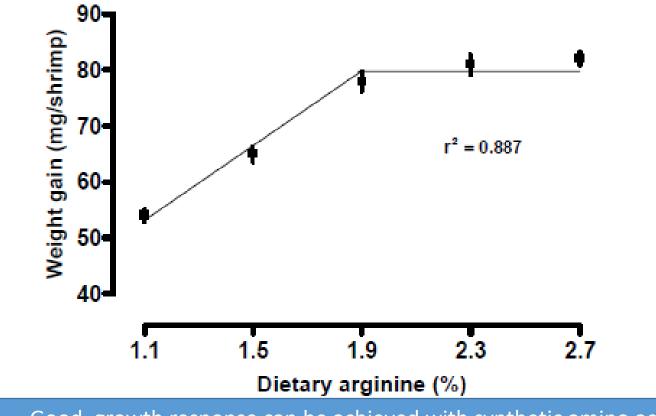
Fig. 2. Linear broken line regressions (broken line model) of nitrogen gain v. nitrogen intake (a), lysine intake (b) and methionine intake (c) in juvenile *Penaeus* monodon. The parameters of the regression equations and the requirement estimates are summarised in Tables 5 and 6. BW, body weight.

Good growth response can be achieved with synthetic amino acids Solid and highly relevant studies can be conducted using standard methodology **Response Atlantic ditch shrimp** (*Palaemonetes varians*) to graded levels of dietary lysine

a)

FNRL

Palma et al. (submitted)

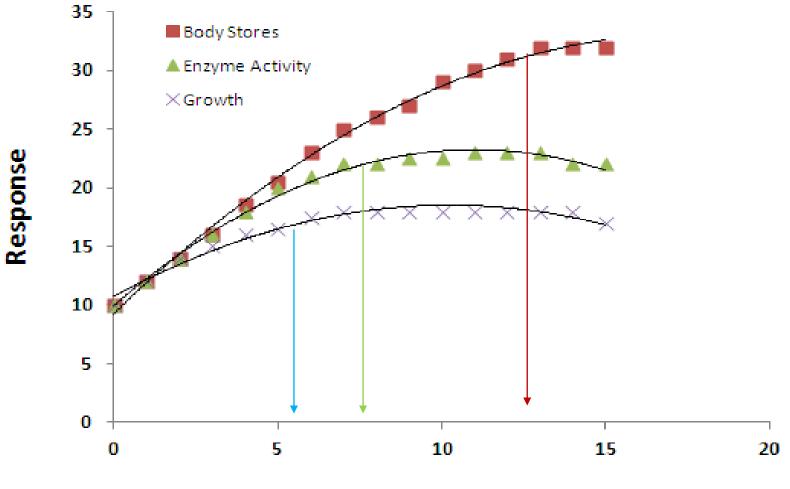

Response Atlantic ditch shrimp (*Palaemonetes varians*) to graded levels of dietary methionine

b) 90-Weight gain (mg/shrimp) 80-70 $r^2 = 0.8263$ 60-50-40-0.7 0.5 0.9 1.1 1.3 Dietary methionine (%)

FNRL

Palma et al. (submitted)

Response Atlantic ditch shrimp (*Palaemonetes varians*) to graded levels of dietary arginine

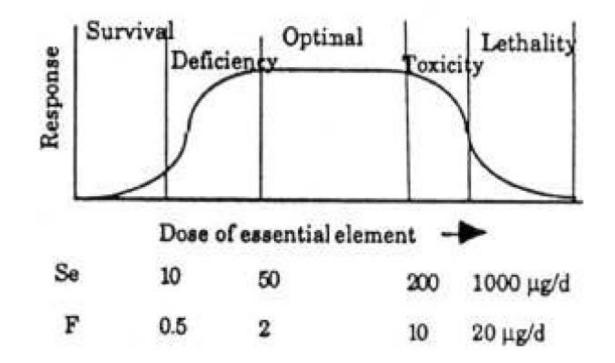


Good growth response can be achieved with synthetic amino acids Solid and highly relevant studies can be conducted using standard methodology

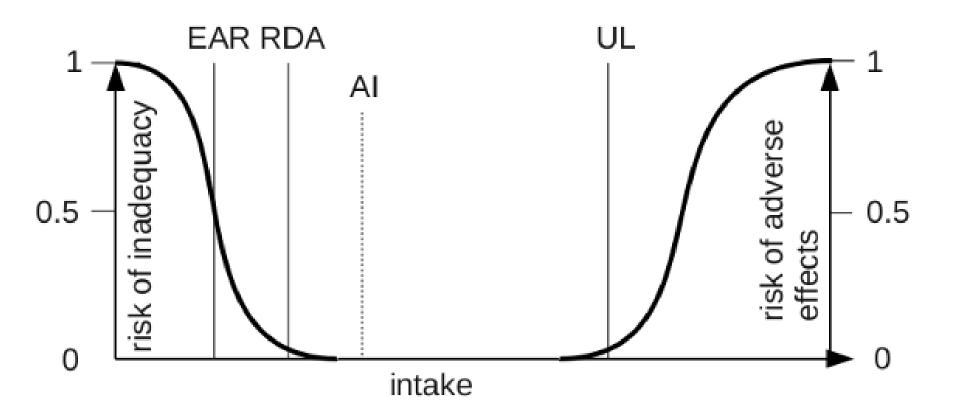
FNRL

Palma et al. (submitted)

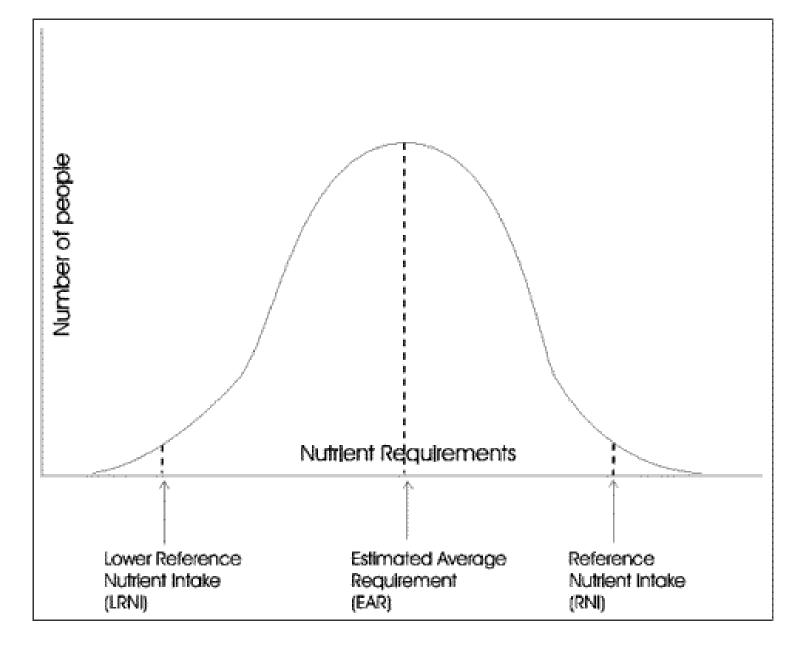
Different Parameters May Yield Different Estimates of Requirement

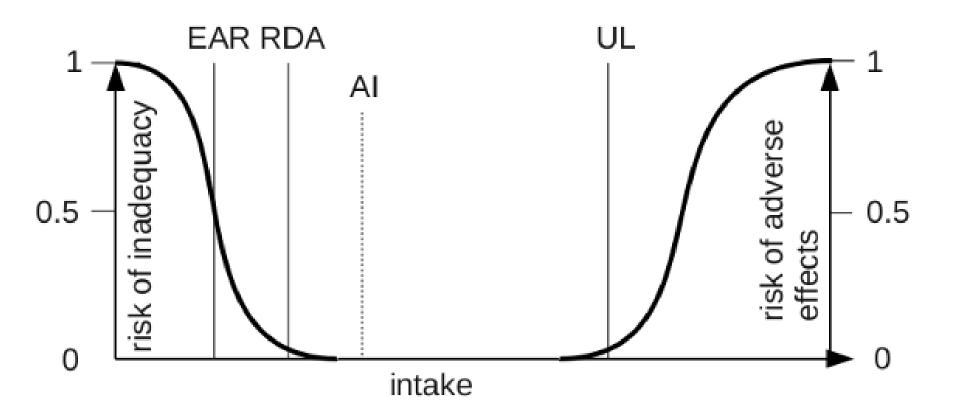


Nutrient Level


Different Models, Different Parameters = Different Estimates of Requirement

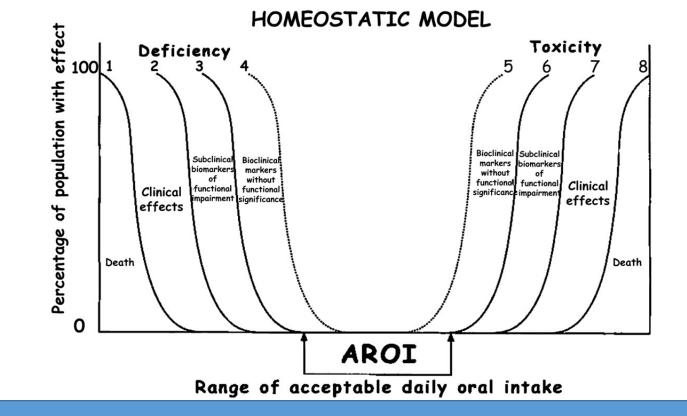
	Model						
Criteria	Four parameter logistic	Exponential	Polynomial	Broken line			
Weight gain	2.11	2.68	2.23	2.19			
Protein deposition	2.44	3.15	2.41	2.22			


Dosis facit venom


 How is uptake and ecosystem and tissue/organismal concentration controlled ?

Estimated average requirement (EAR) Recommended dietary allowance (RDA) Adequate intake (AI) Tolerable upper intake level (UL)

Note: This is a theoretical curve. This type of curve is based on numerous assumptions that are very difficult, almost impossible, to verify



Estimated average requirement (EAR) Recommended dietary allowance (RDA) Adequate intake (AI) Tolerable upper intake level (UL)

Objectives in Animal Nutrition?

Business models? Producing and selling "xyz" (milk, meal, fish fillets, egg) Selling feed ingredients or additives or nutrients

Hinging on the profitability and sustainability (long term outlook) of the business model

Where on this graph do you want to be? As an animal producer? feed manufacturer? vitamin supplier?

Vitamin	Requirement
Fat-soluble vitamins	
Vitamin A, IU/kg	2,500
Vitamin D, IU/kg	2,400
Vitamin E, IU/kg	50
Vitamin K, mg/kg	1
Water-soluble vitamin, mg/kg	
Riboflavin	4
Pantothenic acid	20
Niacin	10
Vitamin B12	0.01
Biotin	0.15
Folate	1.0
Thiamin	1
Vitamin B6	3
Vitamin C	50
Vitamin-like compounds, mg/kg	
Choline	1,000
myo-Inositol	300

Table 9.2 Vitamin requirement of salmonids.

Critical Reviews in Food Science and Nutrition, 49:361–368 (2009) Copyright © Taylor and Francis Group, LLC ISSN: 1040-8398 Doi: 10.1080/10408390802067290

Stability of Vitamins during Extrusion

MIAN N. RIAZ,¹ MUHAMMAD ASIF¹ and RASHIDA ALI²

¹Food Protein R & D Center, Texas A&M University College Station, TX.
²H. E. J. Research Institute of Chemistry, University of Karachi, Pakistan.

Table 3 Typical losses of different vitamin during Pelleting and extrusion.

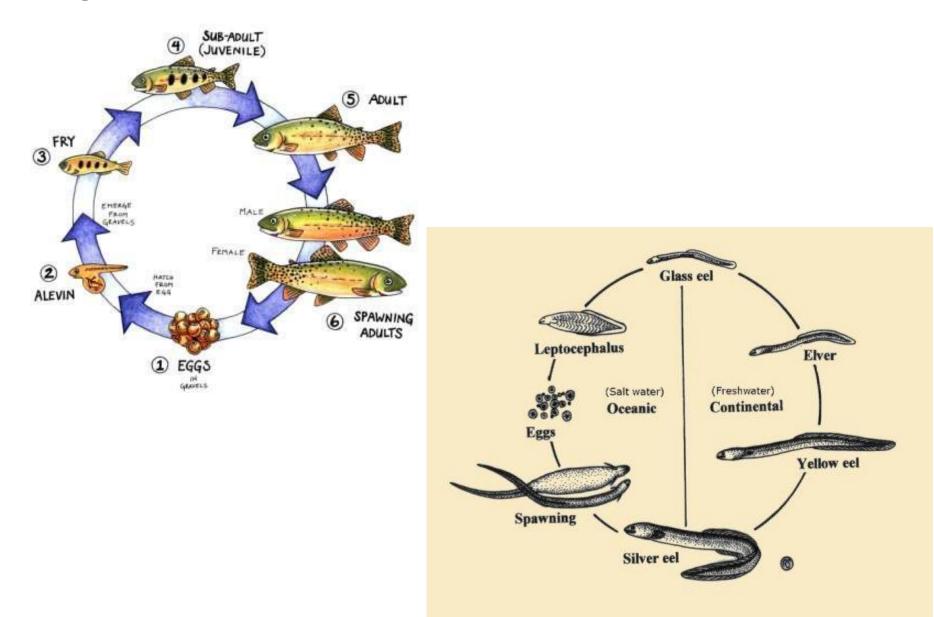
Vitamins	Mineral/Vitamin premix	Pelleting (70°C)	Pelleting (90°C)	Extrusion (80°C)	Canning	Storage
Vitamin A	1% / m	10%	30-40%	30%	Up to 70%	6–7% / m
Vitamin D	10% / m	15%	35%	25%	· _	10% / m
Vitamin E	2% / 6 m as acetate	10%	15%	10%	_	-
Vitamin K	34–38% / m	20%	40%	50%	_	50% in compound feed
Vitamin B ₁	50% / 3 m	15%	50%	50%	Up to 70%	5–20% / m
Vitamin B ₂	5-40%	10%	15%	20%	• -	2–10% / m
Vitamin B ₆	20% / m	10%	30%	5-25%	3-5%	2–5% / m
Niacin	2–4% / m	5%	10%	10-30%	5%	1-2%
Pantothenic acid	1–8% / m	10%	20%	10-20%	_	0–5% / m
Choline	10% / 6 m	5%	5%	Low	NSR	3%/6m
Folic acid	10-40% p m	5-20%	45%	50%	50%	10–50% / m
Biotin	5% / m	10%	35%	15-25%	NSR	1–2% / m
Vitamin C	1–2% / m	40%	85%	90%	_	2–5% / m

NSR = No significant reduction.

Source: Charlton and Ewing (2007).

m = Month.

Shrimp feeding on pelleted artificial diet


Requirement vs. Recommendation/ Specification

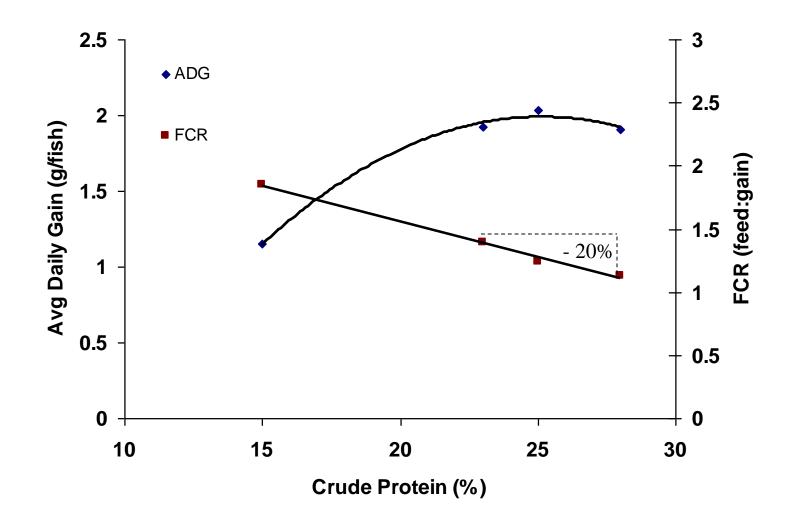
Requirement:Minimum amount necessary for maximum growth
young, fast- growing fish are in general used
Parameters other than growth may be usedRecommendation/
Specification :Requirement + safety margin for losses + margin for other
sources of variations
= Matter of Opinion (scientific or not)

AQUACULTURE = Diversity of Species

Differences Between Different Life Stages or Weight Ranges

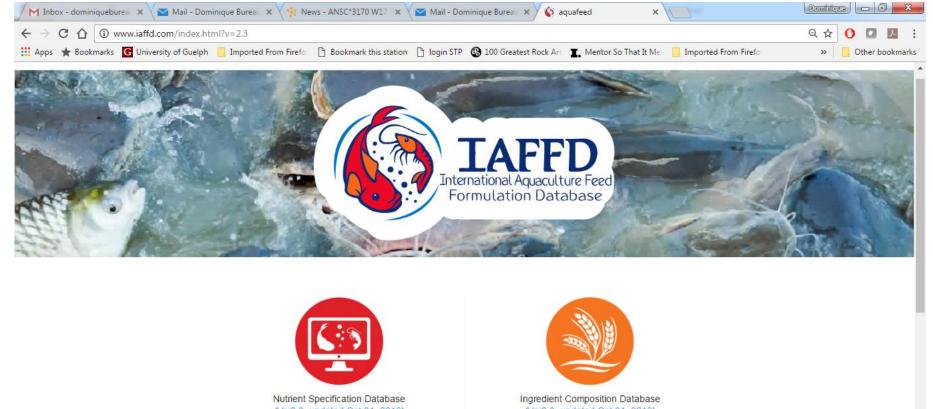
Feed is not "Feed"

(Azevedo, 1998)


	Regular	HND
	07	
DP, %	37	44
DE, MJ/kg	18	22
DP/DE, g/MJ	20	20
Weight gain, g/fish	33.4	33.6
Feed efficiency, G:F	1.09	1.33
FCR, F:G	0.92	0.75

Protein Levels of Aquaculture Feeds Produced by a "Generalist" Aquaculture Feed Manufacturer

Feeds


How you adapt the nutrient composition of feed of different chemical composition? Multiple contradictory opinions / approaches Daily Weight Gain and Feed Conversion Ratio of Nile Tilapia Fed Commercial Feeds with Different Nutrient Densities

Data from a commercial cage culture operation in SE Asia

Current Challenge:

Developing Nutritional Specifications for Different Species, Life Stages, Weight Ranges and Feed Types

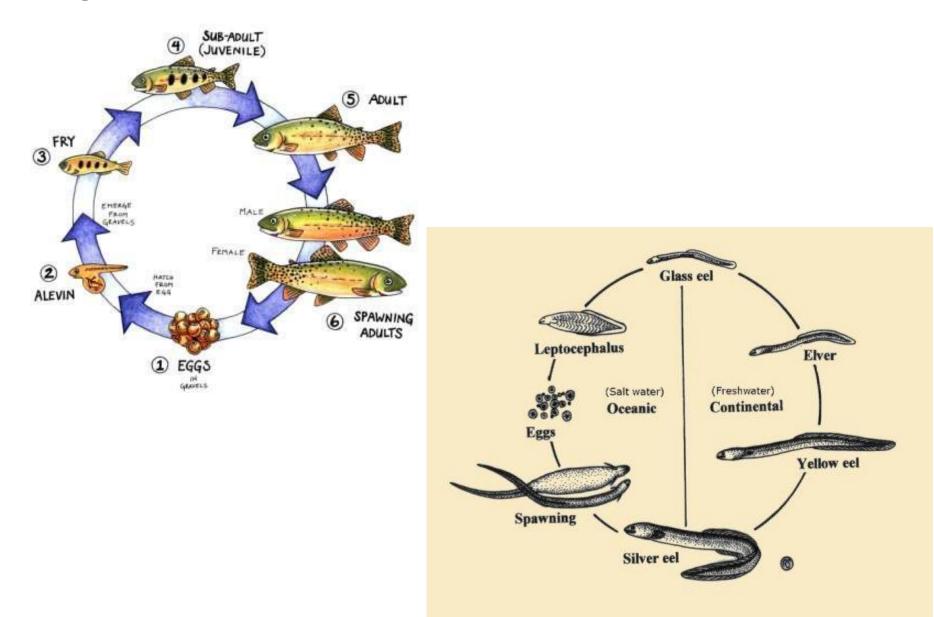
http://iaffd.com/

A very large scale effort : In

Investment > USD 150,000 (direct) + USD 150,000 (indirect) > 20 people worked on this project at the University of Guelph Reviewed and compiled information from > 1000 documents Best effort but also an imperfect one

Scope : 30 Species

	Tilapia (Oreochromis, Tilapia and Sarotherodon spp.)	16	Rohu (Labeo rohita)
	Pangasius (Pangasius spp.)	17	Catla (Catla catla)
	Milkfish (Chanos chanos)	18	Mrigal (Cirrhinus cirrhosus)
	Asian sea bass/Barramundi (Lates calcarifer)	19	Snakehead (Channa spp.)
	Grass Carp (Ctenopharygodon idella)	20	Pacu (Piaractus mesopotamicus)
	Common Carp (Cyprinus carpio)	21	Freshwater Prawn (Macrobrachium spp.)
	Whitelegged Pacific Shrimp (Litopenaeus vannamei)	22	Rainbow Trout (Oncorhynchus mykiss)
	Black Tiger Shrimp (Penaeus monodon)	23	Sturgeon (Acipenser spp.)
	African/Walking Catfish (Clarias spp.)	24	Abalone (Haliotis spp.)
h	Pompano (Trichinotus spp.)	25	Gilthead sea bream (Sparus aurata)
J		26	European sea bass (Dicentrarchus labrax)
L)	Snappers (Lutjanus spp.)	27	Atlantic salmon (Salmo salar)
<u>/</u>	Groupers (Epinephelus, Mycteroperca, Plectropomus spp.)	28	King/Chinook salmon (Oncorhynchus tshawytscha)
5	Siganids (Siganus spp.)	29	Gibel carp (Carassius auratus)
+ 5	Cobia (Rachycentron canadum) Gourami (Osphronemus spp.)	30	Channel catfish (Ictalurus puntatus)


This part of the project involved developing nutritional specifications for a large number of commercially important aquaculture species in Asia.

This was approached in three different, complementary ways:

- Reviewing the scientific and technical literature
 Compiled information / specific data from about 1000 papers
- 2) Advanced nutritional modeling used to generate nutritional specification for 24 species (groups of species) and 3 to 7 life stages or weight ranges

Many "blank" for many parameters = insufficient information, need to be the focus of future efforts = Important to include now so that we start paying attention to these parameters.

Differences Between Different Life Stages or Weight Ranges

Changing Nutritional Specifications as a Function of Life Stage / Live Weight

Tilapia

				Specifications for Stage / Live Weight Range (g)					
				101_1	101_2	101_3 Pre-	101_4	101_5	101_6
				Starter	Fry	grower			Brood
NutrSpecification	Short Name	Unit	Restriction Type	< 5 g	5-50 g	50-200 g	200-500 g	500-1500 g	>1500 g
Moisture	H2O	%	Minimum	10.0) 10.0	10.0	10.0	10.0	10.0
Crude Protein	CP	%	Minimum	37.0) 34.9	32.9	30.4	28.5	28.2
Crude Lipids	LIPID	%	Minimum	8.4	8.6	8.8	9.7	11.3	12.2
Crude Fibre	CF	%	Maximum	0.0	0.0	0.0	0.0	0.0	0.0
Ash	ASH	%	Maximum	0.0	0.0	0.0	0.0	0.0	0.0
NFE	NFE	%	Maximum	0.0	0.0	0.0	0.0	0.0	0.0
NDF	NDF	%	Maximum	0.0	0.0	0.0	0.0	0.0	0.0
ADF	ADF	%	Maximum	0.0	0.0	0.0	0.0	0.0	0.0
Starch	STARC	%	Minimum	16.3	3 17.0	17.7	18.4	18.5	18.3
Dig CP -fish	DP	%	Minimum	34.1	32.1	30.2	28.0	26.3	25.9
Dig GE (DE) - fish	DE kcal	kcal	Minimum	3442	3384	3338	3318	3361	3406
DE Fish Carni		kcal	Minimum	0.0	0.0	0.0	0.0	0.0	0.0
DE Fish Omni		kcal	Minimum	3442	3384	3338	3318	3361	3406

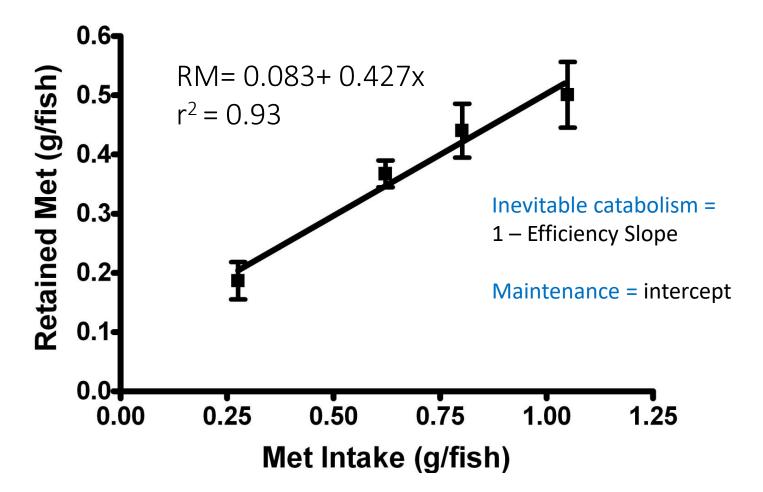
Nutrient Specification Database

ish Species ▪	Target Moisture Level of Feed (%)	Stage/Live Weight F	Range (g)	Get Spec	ifications	
Asian Sea Bass	rt					
Black Tiger Shrimp Cobia		Short Name	Unit	Restriction Type	Value	
Common Carp Freshwater Prawn		H2O	%	Standard		
Gourami Grass Carp		CP	%	Min.		
Groupers IMC Catla IMC Mrigala		LIPID	%	Min.		
IMC Rohita		CF	%	Max.		
Milkfish Pacu Pangasius		ASH	%	Max.		
Pompano Rainbow Trout Siganids		NFE	%	Max.		
SPA06 Neutral Detergent	Fiber	NDF	%	Max.		
SPA07 Acid Detergent Fib	per	ADF	%	Max.		

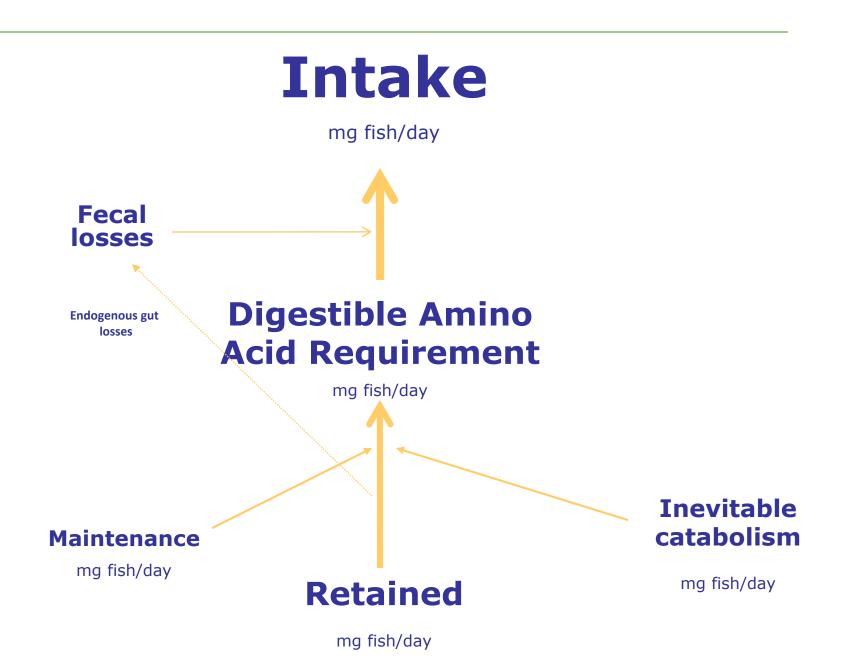
How much material (brick, mortar, roofing tiles, etc.) did the little pig need to build his brick house?

If we can approach construction/ engineering this way, Why can't we apply the same ideas to nutrition???

Factorial Amino Acid Utilization Scheme



Factorial Amino Acid Requirement Model


Efficiency of Retention

FNRL

Retained methionine (g/fish) vs. methionine intake (g/fish)

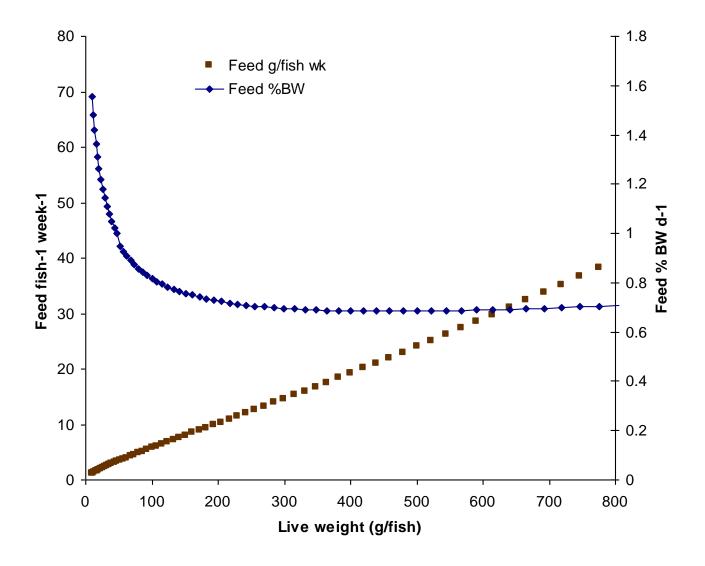
Factorial Amino Acid Requirement Model

Factorial Model of Amino Acid Requirement Model

Absolute EAA (e.g. Met) Requirement (g per fish per day)

Divided by

Expected feed intake (g fish per day)


How do you get this value?

Equal

Optimal Dietary Concentration (%, mg/kg, kcal/kg)

FNRL

Simulated feed intake of rainbow trout of increasing weight

(TGC= 0.180, Temperature = 9°C)

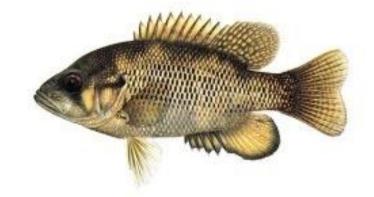
Bureau et al. (2002)

Aquaculture 410-411 (2013) 138-147

Contents lists available at SciVerse ScienceDirect

Aquaculture

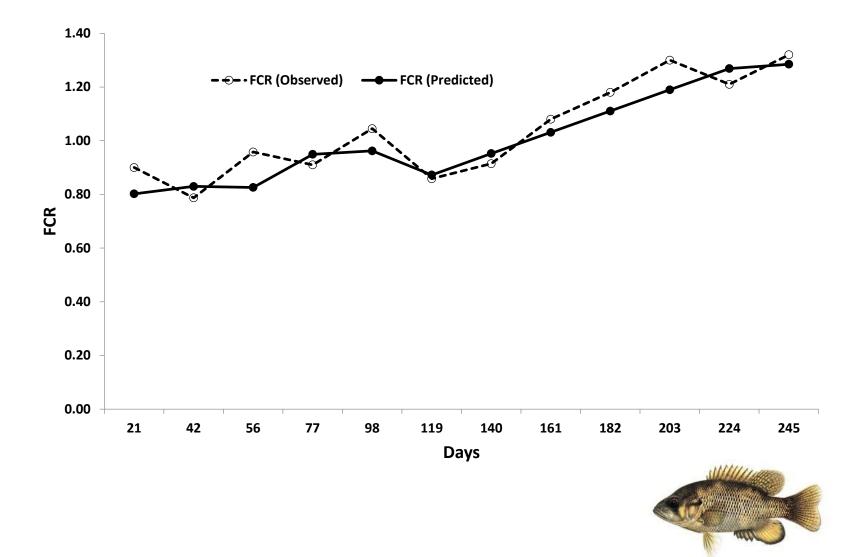
journal homepage: www.elsevier.com/locate/aqua-online

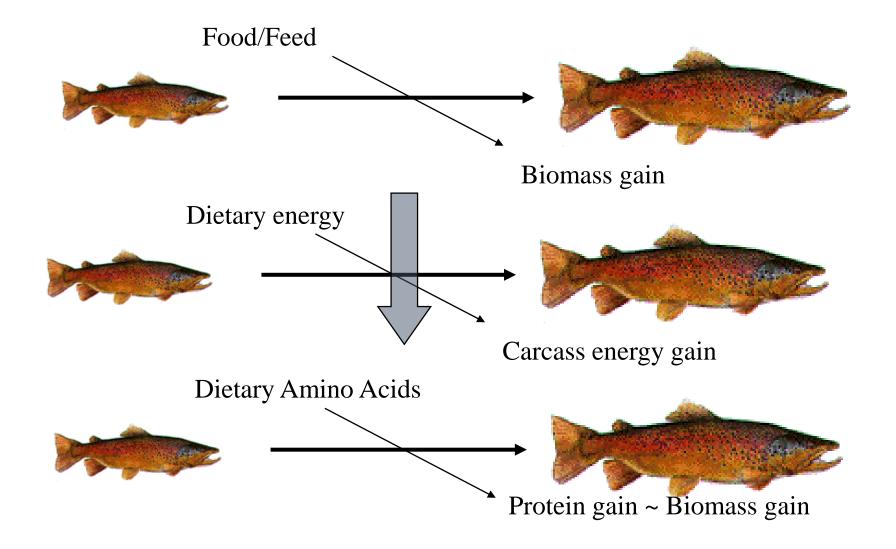

Bioenergetics-Based Factorial Model to Determine Feed Requirement and Waste Output of Tilapia Produced under Commercial Conditions

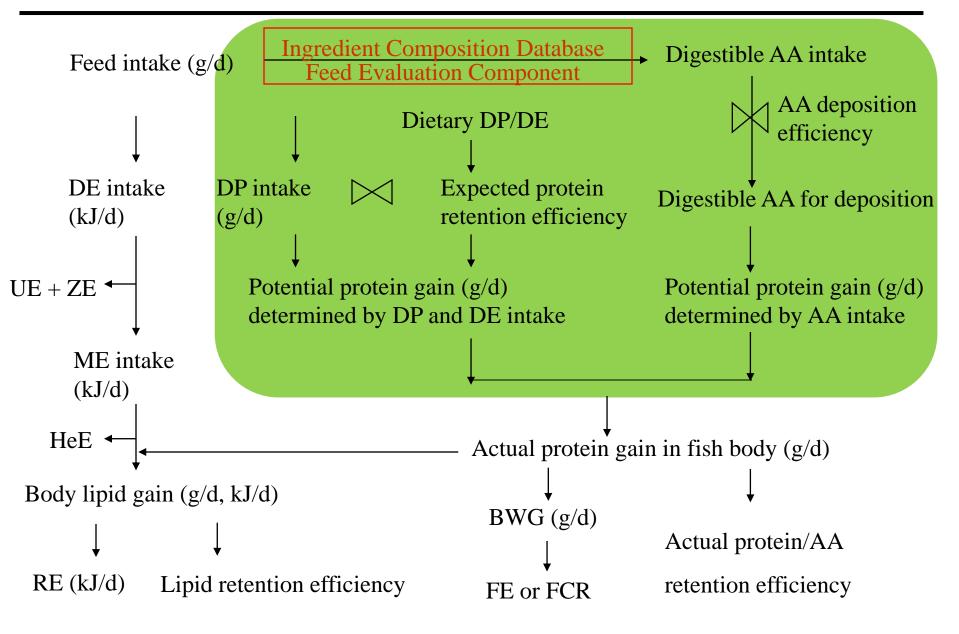
M.A. Kabir Chowdhury^{a,*}, Sohail Siddiqui^b, Katheline Hua^c, Dominique P. Bureau^a

^a Fish Nutrition Research Laboratory, Dept. of Animal and Poultry Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

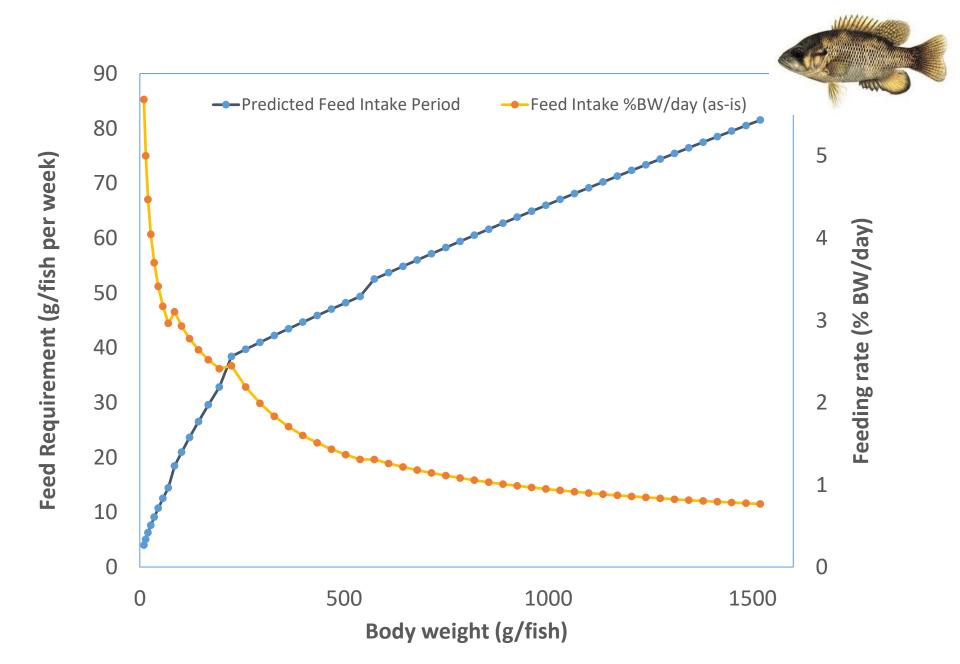
^b Dorion Fish Culture Station, Ministry of Natural Resources, Dorion, Ontario, Canada


^c Faculty of Agriculture and Horticulture, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany

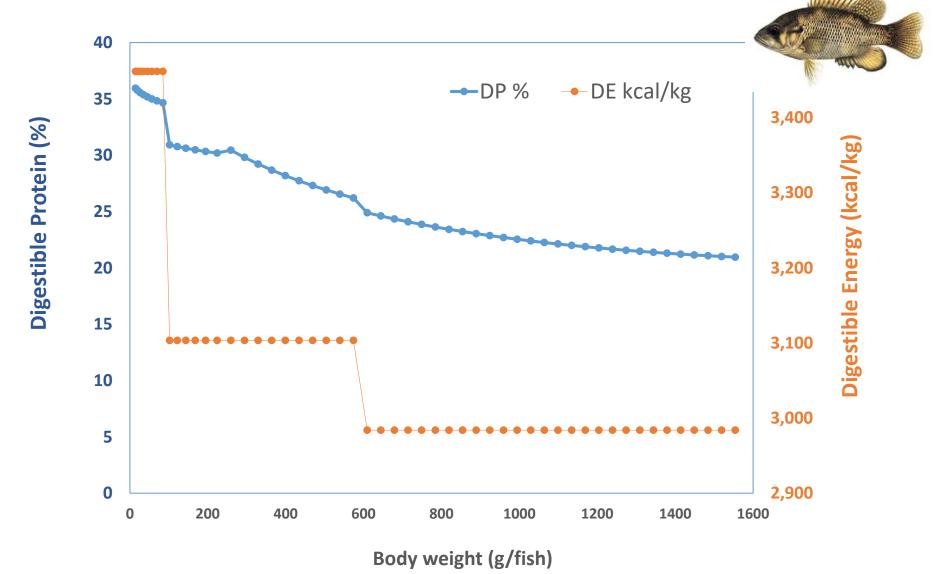



Observed and predicted evolution of feed conversion ratio (feed:gain) of Nile tilapia during a pilot-scale trial

Evolution of Feed Utilization Models



A Factorial Essential Amino Acid - Bioenergetic Hybrid Model

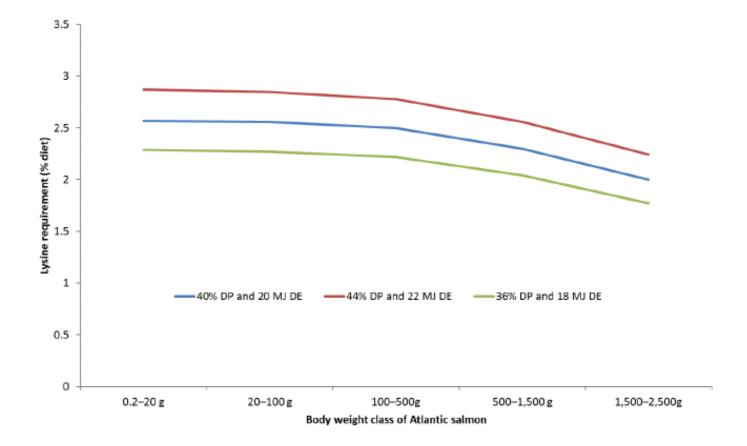


Hua and Bureau (2012)

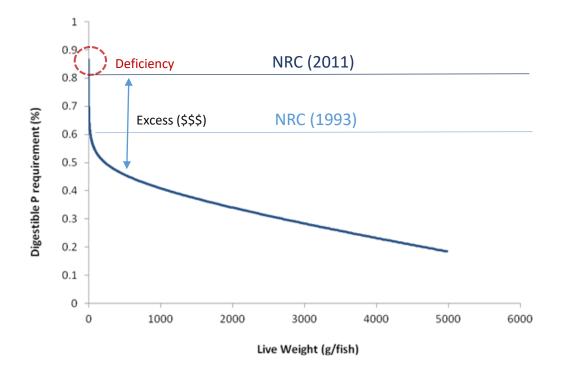
Simulated feed intake of Nile tilapia of increasing weight

Predicted Optimal Digestible Protein and Digestible Energy Content of Nile Tilapia Feeds

Digestible EAA requirements (% Diet DM) of rainbow trout of different weights Fed Diets with 20 MJ DE. (EAA Requirements estimated using a factorial model)


		Weight Class	
Essential Amino Acids	0.2–20 g	20–500 g	500–1,500 g
		% diet DM	
Arg	1.91	1.77	1.62
His	0.83	0.77	0.69
Ile	1.27	1.19	0.98
Leu	2.26	2.11	1.78
Lys	2.47	2.31	1.92
Met + Cys	1.32	1.23	1.10
Phe + Tyr	2.49	2.33	1.82
Thr	1.77	1.63	1.60
Trp	0.43	0.40	0.42
Val	1.90	1.76	1.64

Source: NRC (2011)


Digestible EAA requirements (% diet DM) estimated for Atlantic salmon of different weights fed diets

	Weight Class														
		0.2–20 g			20–100 g	ţ		100-500	3	500-1,500 g			1,500-2,500g		
Diet	40/20	44/22	36/18	40/20	44/22	36/18	40/20	44/22	36/18	40/20	44/22	36/18	40/20	44/22	36/18
Arg	1.72	1.92	1.53	1.71	1.91	1.52	1.67	1.86	1.48	1.53	1.71	1.36	1.34	1.50	1.18
His	1.07	1.19	0.95	1.06	1.18	0.94	1.03	1.15	0.92	0.95	1.06	0.84	0.83	0.93	0.73
Ile	1.40	1.56	1.24	1.39	1.55	1.23	1.35	1.51	1.20	1.25	1.39	1.11	1.09	1.21	0.96
Leu	2.52	2.81	2.24	2.51	2.80	2.23	2.45	2.73	2.17	2.25	2.51	2.00	1.96	2.19	1.73
Lys	2.57	2.87	2.29	2.56	2.85	2.27	2.50	2.78	2.22	2.30	2.56	2.04	2.00	2.24	1.77
Met	1.03	1.14	0.91	1.02	1.14	0.91	1.00	1.11	0.88	0.92	1.02	0.81	0.80	0.89	0.71
Phe	1.60	1.78	1.42	1.59	1.77	1.41	1.55	1.73	1.38	1.43	1.59	1.26	1.24	1.39	1.10
Thr	1.40	1.56	1.25	1.39	1.55	1.24	1.36	1.52	1.21	1.25	1.40	1.11	1.09	1.22	0.96
Тгр	0.30	0.33	0.26	0.30	0.33	0.26	0.29	0.32	0.26	0.26	0.30	0.23	0.23	0.26	0.20
Val	1.78	1.99	1.58	1.77	1.98	1.58	1.73	1.93	1.54	1.59	1.78	1.41	1.39	1.55	1.23

Diets with 40% DP and 20 MJ DE (Diet 40/20), 44% DP and 22 MJ DE (Diet 44/22), 36% DP and 18 MJ DE (Diet 36/18).

Theoretical Digestible P Requirement of Atlantic salmon of Increasing Weights

Theoretical estimate of digestible P requirement of Atlantic salmon of increasing weights

			g/fish		
	0.2 – 20	20 - 500	500 - 1500	1500 - 3000	3000 - 5000
Expected FCR, feed:gain*	0.7	0.8	1.0	1.2	1.6
Dig. P Requirement, Mean, %	0.74	0.55	0.44	0.35	0.25
Dig. P Requirement, Range, % **	0.91-0.64	0.64-0.48	0.48-0.39	0.39-0.30	0.30-0.20

Estimates derived from a factorial modeling exercise (Feed with 20 MJ DE) based on the model described by Hua and Bureau (2012) and used in modeling exercises developed for the NRC (2011).

Type of Information Required?

- Simple growth curve (weight vs. time) under practical conditions
- Realistic estimates of Feed Conversion Ratio (feed:gain) vs. live weight
- Whole body composition
 - Proximate : Dry matter, protein, lipids, ash, gross energy
 - amino acids, phosphorus, fatty acid profile of phospholipids
- Reliable budgets for energy, nitrogen and other nutrients
- Results from essential nutrient requirement trials
 - Effect of live weight / life stages
 - Effect of diet composition
- Testing / Feedback / Criticisms !!!